searching the database
Your data matches 43 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001470
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St001470: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 0
[2,1,3,4] => 1
[2,1,4,3] => 0
[2,3,1,4] => 1
[2,3,4,1] => 0
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 1
[3,4,1,2] => 0
[3,4,2,1] => 1
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 1
[1,3,2,4,5] => 1
[1,3,2,5,4] => 1
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 1
[1,4,2,5,3] => 1
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
Description
The cyclic holeyness of a permutation.
For $S\subset [n]:=\{1,2,\dots,n\}$ let $\delta(S)$ be the number of elements $m\in S$ such that $(m\bmod n)+1\notin S$.
For a permutation $\pi$ of $[n]$ the cyclic holeyness of $\pi$ is $$\max_{S\subset [n]} (\delta(\pi(S))-\delta(S)).$$
Matching statistic: St001469
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
St001469: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001469: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [] => ? = 0
[1,2] => [1] => 0
[2,1] => [1] => 0
[1,2,3] => [1,2] => 0
[1,3,2] => [1,2] => 0
[2,1,3] => [2,1] => 0
[2,3,1] => [2,1] => 0
[3,1,2] => [1,2] => 0
[3,2,1] => [2,1] => 0
[1,2,3,4] => [1,2,3] => 0
[1,2,4,3] => [1,2,3] => 0
[1,3,2,4] => [1,3,2] => 1
[1,3,4,2] => [1,3,2] => 1
[1,4,2,3] => [1,2,3] => 0
[1,4,3,2] => [1,3,2] => 1
[2,1,3,4] => [2,1,3] => 1
[2,1,4,3] => [2,1,3] => 1
[2,3,1,4] => [2,3,1] => 1
[2,3,4,1] => [2,3,1] => 1
[2,4,1,3] => [2,1,3] => 1
[2,4,3,1] => [2,3,1] => 1
[3,1,2,4] => [3,1,2] => 1
[3,1,4,2] => [3,1,2] => 1
[3,2,1,4] => [3,2,1] => 0
[3,2,4,1] => [3,2,1] => 0
[3,4,1,2] => [3,1,2] => 1
[3,4,2,1] => [3,2,1] => 0
[4,1,2,3] => [1,2,3] => 0
[4,1,3,2] => [1,3,2] => 1
[4,2,1,3] => [2,1,3] => 1
[4,2,3,1] => [2,3,1] => 1
[4,3,1,2] => [3,1,2] => 1
[4,3,2,1] => [3,2,1] => 0
[1,2,3,4,5] => [1,2,3,4] => 0
[1,2,3,5,4] => [1,2,3,4] => 0
[1,2,4,3,5] => [1,2,4,3] => 1
[1,2,4,5,3] => [1,2,4,3] => 1
[1,2,5,3,4] => [1,2,3,4] => 0
[1,2,5,4,3] => [1,2,4,3] => 1
[1,3,2,4,5] => [1,3,2,4] => 1
[1,3,2,5,4] => [1,3,2,4] => 1
[1,3,4,2,5] => [1,3,4,2] => 1
[1,3,4,5,2] => [1,3,4,2] => 1
[1,3,5,2,4] => [1,3,2,4] => 1
[1,3,5,4,2] => [1,3,4,2] => 1
[1,4,2,3,5] => [1,4,2,3] => 1
[1,4,2,5,3] => [1,4,2,3] => 1
[1,4,3,2,5] => [1,4,3,2] => 1
[1,4,3,5,2] => [1,4,3,2] => 1
[1,4,5,2,3] => [1,4,2,3] => 1
[1,4,5,3,2] => [1,4,3,2] => 1
Description
The holeyness of a permutation.
For $S\subset [n]:=\{1,2,\dots,n\}$ let $\delta(S)$ be the number of elements $m\in S$ such that $m+1\notin S$.
For a permutation $\pi$ of $[n]$ the holeyness of $\pi$ is $$\max_{S\subset [n]} (\delta(\pi(S))-\delta(S)).$$
Matching statistic: St000704
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 79%●distinct values known / distinct values provided: 67%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 79%●distinct values known / distinct values provided: 67%
Values
[1] => [] => []
=> ?
=> ? = 0
[1,2] => [1] => [1]
=> []
=> ? ∊ {0,0}
[2,1] => [1] => [1]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,2] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,2] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,1] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [1,2] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[4,1,2,3] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,5,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,4,1,3,5] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,4,1,5,3] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,4,3,1,5] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[2,4,3,5,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[2,4,5,1,3] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,4,5,3,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,5,4,1,3] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,5,4,3,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[3,1,4,2,5] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,1,4,5,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,1,5,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,2,1,4,5] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,1,5] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,4,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,1,5,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,2,1,5] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[3,4,2,5,1] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[3,4,5,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,5,2,1] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[3,5,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,5,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,5,2,4,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,5,4,2,1] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[4,1,3,2,5] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,1,3,5,2] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,1,5,3,2] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,2,1,3,5] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,2,1,5,3] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,1,3] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2,5] => [4,3,1,2] => [2,1,1]
=> [1,1]
=> 1
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
Matching statistic: St001128
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 79%●distinct values known / distinct values provided: 67%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 79%●distinct values known / distinct values provided: 67%
Values
[1] => [] => []
=> ?
=> ? = 0
[1,2] => [1] => [1]
=> []
=> ? ∊ {0,0}
[2,1] => [1] => [1]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,2] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,2] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,1] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [1,2] => [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1] => [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[4,1,2,3] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,5,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,4,1,3,5] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,4,1,5,3] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,4,3,1,5] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[2,4,3,5,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[2,4,5,1,3] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,4,5,3,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,5,4,1,3] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,5,4,3,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[3,1,4,2,5] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,1,4,5,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,1,5,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,2,1,4,5] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,1,5] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,4,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,1,5,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,2,1,5] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[3,4,2,5,1] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[3,4,5,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,5,2,1] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[3,5,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,5,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,5,2,4,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,5,4,2,1] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[4,1,3,2,5] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,1,3,5,2] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,1,5,3,2] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,2,1,3,5] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,2,1,5,3] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,1,3] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2,5] => [4,3,1,2] => [2,1,1]
=> [1,1]
=> 1
Description
The exponens consonantiae of a partition.
This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
Matching statistic: St001199
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 73%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 73%●distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [2]
=> []
=> []
=> ? ∊ {0,0}
[2,1] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0}
[1,2,3] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,3,4,5] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,3,4,2,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,4,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,4,3,5] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3,1,4,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,5,1,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,4,1,3,5] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,4,1,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,5,1,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,4,2,5] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,4,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,5,2,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,4,1,2,5] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,5,1,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,5,1,2,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[4,1,2,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,1,5,2,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[4,2,1,5,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[4,2,5,3,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[4,3,1,5,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[4,3,2,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[4,3,2,5,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001603
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1]
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [2,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,5,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,5,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[1,3,4,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,4,5,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,5,2,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,4,2,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,4,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,5,3,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,5,4,3] => [3,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,1,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,5,1,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,4,1,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,5,1,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,5,1,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,5,1,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,1,2,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,1,4,2,5] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,1,4,5,2] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,1,5,2,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,4,1,5,2] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,5,1,2,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[4,1,2,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[4,1,5,2,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [3,2]
=> 2
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,5,6,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,6,4,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,6,5,4] => [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001605
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1]
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [2,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,5,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,5,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[1,3,4,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,4,5,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,5,2,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,4,2,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,4,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,5,3,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,1,5,4,3] => [3,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,1,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,5,1,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,4,1,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,5,1,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,5,1,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,5,1,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,1,2,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,1,4,2,5] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,1,4,5,2] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,1,5,2,4] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,4,1,5,2] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[3,5,1,2,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[4,1,2,5,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[4,1,5,2,3] => [2,2,1]
=> [2,1]
=> [3]
=> 1
[4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [3,2]
=> 2
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,5,6,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,6,4,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
[1,2,3,6,5,4] => [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [3,1]
=> 1
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the cyclic group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001878
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 67%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 0
[1,2] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,0}
[2,1] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {0,0}
[1,2,3] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4] => [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5] => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3] => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,4,5] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,5,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,2,5] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,4,3,2,5] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,4,3,5,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,4,5,2,3] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,5,3,4,2] => [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,5,4,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[2,5,4,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,1,5,4,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,2,5,4,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[3,5,4,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,1,5,3,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,2,5,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,3,1,5,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,3,2,1,5] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[4,3,2,5,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,1,4,3,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,2,1,4,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,2,4,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,3,2,1,4] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,4,2,1,3] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[5,4,3,1,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,5,4,6] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,5,6,4] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,6,4,5] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,3,6,5,4] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
[1,2,4,3,6,5] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,2,4,6,5,3] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,3,6,4] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,2,5,4,3,6] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,2,5,4,6,3] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,2,5,6,4,3] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,6,3,5,4] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,6,4,3,5] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,2,6,4,5,3] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,6,5,4,3] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,4,6,5] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,5,4,6] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,5,6,4] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,6,4,5] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,6,5,4] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,3,4,2,6,5] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,2,6,4] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,4,2,6] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,4,6,2] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,6,4,2,5] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,6,5,2,4] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
[1,3,6,5,4,2] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,4,2,3,6,5] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,5,3,6] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001123
Mp00223: Permutations —runsort⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001123: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 48%●distinct values known / distinct values provided: 33%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001123: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 48%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [1,2] => [2]
=> []
=> ? ∊ {0,0}
[2,1] => [1,2] => [2]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,2,3,4,5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4] => [1,2,3,5,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5] => [1,2,4,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3] => [1,2,4,5,3] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [1,2,5,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [1,2,5,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [1,3,2,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,5,4] => [1,3,2,5,4] => [3,2]
=> [2]
=> 1
[1,3,4,2,5] => [1,3,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[1,3,5,4,2] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[1,4,2,3,5] => [1,4,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[1,4,3,2,5] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[1,4,3,5,2] => [1,4,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [1,4,5,2,3] => [3,2]
=> [2]
=> 1
[1,4,5,3,2] => [1,4,5,2,3] => [3,2]
=> [2]
=> 1
[1,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,5,4] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[2,1,4,3,5] => [1,4,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,5,3] => [1,4,5,2,3] => [3,2]
=> [2]
=> 1
[2,3,1,4,5] => [1,4,5,2,3] => [3,2]
=> [2]
=> 1
[2,4,1,3,5] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[2,4,1,5,3] => [1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,1,5] => [1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[2,5,3,1,4] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[2,5,4,1,3] => [1,3,2,5,4] => [3,2]
=> [2]
=> 1
[3,1,4,2,5] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[3,1,4,5,2] => [1,4,5,2,3] => [3,2]
=> [2]
=> 1
[3,1,5,2,4] => [1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[3,2,1,4,5] => [1,4,5,2,3] => [3,2]
=> [2]
=> 1
[3,2,4,1,5] => [1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 1
[3,2,5,1,4] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[4,1,3,2,5] => [1,3,2,5,4] => [3,2]
=> [2]
=> 1
[4,1,3,5,2] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[4,2,1,3,5] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[4,2,5,1,3] => [1,3,2,5,4] => [3,2]
=> [2]
=> 1
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [4,2]
=> [2]
=> 1
[1,2,4,6,3,5] => [1,2,4,6,3,5] => [4,2]
=> [2]
=> 1
[1,2,4,6,5,3] => [1,2,4,6,3,5] => [4,2]
=> [2]
=> 1
[1,2,5,3,6,4] => [1,2,5,3,6,4] => [4,2]
=> [2]
=> 1
[1,2,5,4,3,6] => [1,2,5,3,6,4] => [4,2]
=> [2]
=> 1
[1,2,5,6,3,4] => [1,2,5,6,3,4] => [4,2]
=> [2]
=> 1
[1,2,5,6,4,3] => [1,2,5,6,3,4] => [4,2]
=> [2]
=> 1
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [4,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [1,2,6,3,5,4] => [4,1,1]
=> [1,1]
=> 1
[1,3,2,4,6,5] => [1,3,2,4,6,5] => [4,2]
=> [2]
=> 1
[1,3,2,5,4,6] => [1,3,2,5,4,6] => [4,2]
=> [2]
=> 1
[1,3,2,5,6,4] => [1,3,2,5,6,4] => [4,2]
=> [2]
=> 1
[1,3,2,6,4,5] => [1,3,2,6,4,5] => [4,2]
=> [2]
=> 1
[1,3,2,6,5,4] => [1,3,2,6,4,5] => [4,2]
=> [2]
=> 1
[1,3,4,2,6,5] => [1,3,4,2,6,5] => [4,2]
=> [2]
=> 1
[1,3,4,6,2,5] => [1,3,4,6,2,5] => [4,2]
=> [2]
=> 1
[1,3,4,6,5,2] => [1,3,4,6,2,5] => [4,2]
=> [2]
=> 1
[1,3,5,2,4,6] => [1,3,5,2,4,6] => [4,2]
=> [2]
=> 1
[1,3,5,2,6,4] => [1,3,5,2,6,4] => [4,2]
=> [2]
=> 1
[1,3,5,4,2,6] => [1,3,5,2,6,4] => [4,2]
=> [2]
=> 1
[1,3,5,4,6,2] => [1,3,5,2,4,6] => [4,2]
=> [2]
=> 1
[1,3,5,6,2,4] => [1,3,5,6,2,4] => [4,2]
=> [2]
=> 1
Description
The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{21^{n-2}}$, for $\lambda\vdash n$.
Matching statistic: St000284
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 45%●distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,2,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,5,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,5,3,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,5,4,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,3,5,1,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,4,1,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,4,5,1,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,5,1,3,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,5,1,2,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,6,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,4,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,6,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,6,3,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,6,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,3,6,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,6,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,6,4,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,3,4,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,6,3,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
The following 33 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000298The order dimension or Dushnik-Miller dimension of a poset. St000640The rank of the largest boolean interval in a poset. St000260The radius of a connected graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000454The largest eigenvalue of a graph if it is integral. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000455The second largest eigenvalue of a graph if it is integral. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001866The nesting alignments of a signed permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001868The number of alignments of type NE of a signed permutation. St000447The number of pairs of vertices of a graph with distance 3. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001871The number of triconnected components of a graph. St000068The number of minimal elements in a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!