Your data matches 55 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001765
St001765: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 6
([(1,2)],3)
=> 5
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 24
([(2,3)],4)
=> 22
([(1,3),(2,3)],4)
=> 16
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 18
([(0,3),(1,2),(2,3)],4)
=> 8
([(1,2),(1,3),(2,3)],4)
=> 10
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 120
([(3,4)],5)
=> 114
([(2,4),(3,4)],5)
=> 96
([(1,4),(2,4),(3,4)],5)
=> 66
([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
([(1,4),(2,3)],5)
=> 98
([(1,4),(2,3),(3,4)],5)
=> 68
([(0,1),(2,4),(3,4)],5)
=> 74
([(2,3),(2,4),(3,4)],5)
=> 74
([(0,4),(1,4),(2,3),(3,4)],5)
=> 32
([(1,4),(2,3),(2,4),(3,4)],5)
=> 42
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(1,3),(1,4),(2,3),(2,4)],5)
=> 34
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 8
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 21
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 42
([(0,1),(2,3),(2,4),(3,4)],5)
=> 46
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 16
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 20
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 17
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of connected components of the friends and strangers graph. Let $X$ and $Y$ be graphs with the same vertex set $\{1,\dots,n\}$. Then the friends-and-strangers graph has as vertex set the set of permutations $\mathfrak S_n$ and edges $\left(\sigma, (i, j)\circ\sigma\right)$ if $(i, j)$ is an edge of $X$ and $\left(\sigma(i), \sigma(j)\right)$ is an edge of $Y$. This statistic is the number of connected components of the friends and strangers graphs where $X=Y$. For example, if $X$ is a complete graph the statistic is $1$, if $X$ has no edges, the statistic is $n!$, and if $X$ is the path graph, the statistic is $$ \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k (n-k)!\binom{n-k}{k}, $$ see [thm. 2.2, 3].
Matching statistic: St000772
Mp00117: Graphs Ore closureGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000772: Graphs ⟶ ℤResult quality: 3% values known / values provided: 26%distinct values known / distinct values provided: 3%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 1
([],2)
=> ([],2)
=> ([],0)
=> ([],0)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([],0)
=> ([],0)
=> ? ∊ {2,5,6}
([(1,2)],3)
=> ([(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,5,6}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,5,6}
([],4)
=> ([],4)
=> ([],0)
=> ([],0)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(2,3)],4)
=> ([(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {2,2,6,8,10,16,18,22,24}
([],5)
=> ([],5)
=> ([],0)
=> ([],0)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(3,4)],5)
=> ([(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> ([],6)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(4,5)],6)
=> ([(4,5)],6)
=> ([],1)
=> ([],1)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
St001878: Lattices ⟶ ℤResult quality: 2% values known / values provided: 25%distinct values known / distinct values provided: 2%
Values
([],1)
=> [1] => [[1],[]]
=> ([],1)
=> ? = 1
([],2)
=> [2] => [[2],[]]
=> ([],1)
=> ? ∊ {1,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,2}
([],3)
=> [3] => [[3],[]]
=> ([],1)
=> ? ∊ {1,2,5,6}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {1,2,5,6}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,2,5,6}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {1,2,5,6}
([],4)
=> [4] => [[4],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {1,1,2,2,6,8,10,16,18,22,24}
([],5)
=> [5] => [[5],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {1,1,2,2,2,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> [6] => [[6],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001118
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St001118: Graphs ⟶ ℤResult quality: 2% values known / values provided: 19%distinct values known / distinct values provided: 2%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 1
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? ∊ {1,2,5,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,5,6}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,5,6}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,5,6}
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,1,1,2,2,2,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
Description
The acyclic chromatic index of a graph. An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest. The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 16%distinct values known / distinct values provided: 3%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,2}
([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,2}
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {2,5,6}
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
Description
The least common multiple of the parts of the partition.
Matching statistic: St000707
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000707: Integer partitions ⟶ ℤResult quality: 5% values known / values provided: 16%distinct values known / distinct values provided: 5%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,2}
([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,2}
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {2,5,6}
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 6
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 6
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 6
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
Description
The product of the factorials of the parts.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000708: Integer partitions ⟶ ℤResult quality: 5% values known / values provided: 16%distinct values known / distinct values provided: 5%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,2}
([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,2}
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {2,5,6}
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
Description
The product of the parts of an integer partition.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000933: Integer partitions ⟶ ℤResult quality: 5% values known / values provided: 16%distinct values known / distinct values provided: 5%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,2}
([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,2}
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {2,5,6}
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {2,6,8,10,16,18,22,24}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,2,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
Description
The number of multipartitions of sizes given by an integer partition. This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000937: Integer partitions ⟶ ℤResult quality: 5% values known / values provided: 16%distinct values known / distinct values provided: 5%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,2}
([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,2}
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {2,5,6}
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,5,6}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,2,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 3
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
Description
The number of positive values of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001568: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 16%distinct values known / distinct values provided: 2%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,2}
([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,2}
([],3)
=> [1,1,1]
=> [1,1]
=> 2
([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {1,5,6}
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,5,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,5,6}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,6,8,10,16,18,22,24}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,7,8,12,16,17,20,21,24,32,34,42,42,46,66,68,74,74,96,98,114,120}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,6,6,6,6,7,7,9,10,11,12,14,15,16,19,21,24,25,26,26,27,30,32,32,33,34,36,36,45,46,50,53,54,65,66,68,72,79,81,90,96,98,101,101,106,114,120,123,126,133,139,143,156,156,164,184,196,210,214,220,220,221,228,238,242,254,258,270,273,336,352,356,372,372,388,392,394,400,504,508,520,528,534,624,628,696,720}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 1
Description
The smallest positive integer that does not appear twice in the partition.
The following 45 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000744The length of the path to the largest entry in a standard Young tableau. St000815The number of semistandard Young tableaux of partition weight of given shape. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001128The exponens consonantiae of a partition. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001360The number of covering relations in Young's lattice below a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type.