searching the database
Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001781
St001781: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 0
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 0
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 2
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 0
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 0
{{1,2,4},{3,5}}
=> 0
{{1,2,4},{3},{5}}
=> 0
{{1,2,5},{3,4}}
=> 1
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 0
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 1
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 1
{{1,3,5},{2},{4}}
=> 1
{{1,3},{2,5},{4}}
=> 2
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 0
{{1,4},{2,3,5}}
=> 1
Description
The interlacing number of a set partition.
Let $\pi$ be a set partition of $\{1,\dots,n\}$ with $k$ blocks. To each block of $\pi$ we add the element $\infty$, which is larger than $n$. Then, an interlacing of $\pi$ is a pair of blocks $B=(B_1 < \dots < B_b < B_{b+1} = \infty)$ and $C=(C_1 < \dots < C_c < C_{c+1} = \infty)$ together with an index $1\leq i\leq \min(b, c)$, such that $B_i < C_i < B_{i+1} < C_{i+1}$.
Matching statistic: St000771
(load all 20 compositions to match this statistic)
(load all 20 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 75%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 75%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> ? = 0 + 1
{{1,2,3}}
=> [2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0,0} + 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,0} + 1
{{1},{2},{3}}
=> [1,2,3] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,0} + 1
{{1,2,3,4}}
=> [2,3,4,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1} + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [2,6,5,1,4,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [2,6,5,1,4,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,4},{5},{6}}
=> [2,1,4,3,5,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,5,6},{4}}
=> [2,1,5,4,6,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3},{4,5},{6}}
=> [2,1,3,5,4,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3,6},{4},{5}}
=> [2,1,6,4,5,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3},{4},{5,6}}
=> [2,1,3,4,6,5] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2},{3},{4},{5},{6}}
=> [2,1,3,4,5,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000714
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 63%●distinct values known / distinct values provided: 50%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 63%●distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1]
=> []
=> ?
=> ? = 0
{{1,2}}
=> [2]
=> []
=> ?
=> ? ∊ {0,0}
{{1},{2}}
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
{{1,2,3}}
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,1}
{{1,2},{3}}
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1}
{{1,3},{2}}
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1}
{{1},{2,3}}
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,1}
{{1},{2},{3}}
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
{{1,2,3,4}}
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2,3},{4}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2,4},{3}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2},{3,4}}
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2},{3},{4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,3,4},{2}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,3},{2,4}}
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,3},{2},{4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,4},{2,3}}
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,3,4}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,3},{4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1,4},{2},{3}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,4},{3}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2},{3,4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,2,3,4,5}}
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3,4},{5}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3,5},{4}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3},{4,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4,5},{3}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4},{3,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,5},{3,4}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,4,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4},{2,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,5},{2,4}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,4,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,3,4}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3,4,5}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,2},{3},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,2},{3},{4},{5,6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1},{2,3},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of semistandard Young tableau of given shape, with entries at most 2.
This is also the dimension of the corresponding irreducible representation of $GL_2$.
Matching statistic: St001604
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 48%●distinct values known / distinct values provided: 25%
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 48%●distinct values known / distinct values provided: 25%
Values
{{1}}
=> [1]
=> [1]
=> []
=> ? = 0
{{1,2}}
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {0,0}
{{1},{2}}
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,0}
{{1,2,3}}
=> [3]
=> [1,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,1}
{{1,2},{3}}
=> [2,1]
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
{{1,3},{2}}
=> [2,1]
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
{{1},{2,3}}
=> [2,1]
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
{{1},{2},{3}}
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
{{1,2,3,4}}
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1,2,3},{4}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,2,4},{3}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,2},{3,4}}
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,2},{3},{4}}
=> [2,1,1]
=> [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,3,4},{2}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,3},{2,4}}
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,3},{2},{4}}
=> [2,1,1]
=> [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,4},{2,3}}
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1},{2,3,4}}
=> [3,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1},{2,3},{4}}
=> [2,1,1]
=> [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,4},{2},{3}}
=> [2,1,1]
=> [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1},{2,4},{3}}
=> [2,1,1]
=> [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1},{2},{3,4}}
=> [2,1,1]
=> [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,2}
{{1,2,3,4,5}}
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
{{1,2,3,4},{5}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
{{1,2,3,5},{4}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
{{1,2,3},{4,5}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4,5},{3}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
{{1,2,4},{3,5}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,5},{3,4}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,4,5}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4,5},{2}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
{{1,3,4},{2,5}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,5},{2,4}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,4,5}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4,5},{2,3}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3,5}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,5},{2,3,4}}
=> [3,2]
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3,4,5}}
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1},{2,3,5},{4}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3},{4,5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4,5},{2},{3}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,5},{3}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1},{2,4,5},{3}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,4},{3,5}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1},{2,5},{3,4}}
=> [2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
{{1},{2},{3,4,5}}
=> [3,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3,4,5,6}}
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
{{1,2,3,4,5},{6}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
{{1,2,3,4,6},{5}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
{{1,2,3,4},{5,6}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,2,3,4},{5},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
{{1,2,3,5,6},{4}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
{{1,2,3,5},{4,6}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,2,3,5},{4},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
{{1,2,3,6},{4,5}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,2,3,6},{4},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [3,3]
=> [3]
=> 1
{{1,2,4,5,6},{3}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
{{1,2,4,5},{3,6}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,2,4,5},{3},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
{{1,2,4,6},{3,5}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,2,4,6},{3},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [3,3]
=> [3]
=> 1
{{1,2,5,6},{3,4}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,2},{3,4,5,6}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
{{1,2,5,6},{3},{4}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [3,3]
=> [3]
=> 1
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [3,3]
=> [3]
=> 1
{{1,3,4,5,6},{2}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
{{1,3,4,5},{2,6}}
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
{{1,3,4,5},{2},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St000772
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 75%
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 75%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2] => [2] => ([],2)
=> ? = 0 + 1
{{1},{2}}
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
{{1,2,3}}
=> [3] => [3] => ([],3)
=> ? ∊ {0,0,0} + 1
{{1,2},{3}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0} + 1
{{1,3},{2}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0} + 1
{{1},{2,3}}
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
{{1},{2},{3}}
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
{{1,2,3,4}}
=> [4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1,2,3},{4}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1,2,4},{3}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1,2},{3,4}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1,3,4},{2}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1,3},{2,4}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1,4},{2,3}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1},{2,3,4}}
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1},{2,4},{3}}
=> [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1} + 1
{{1},{2},{3,4}}
=> [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2,3,4,5}}
=> [5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,3,4},{5}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,3,5},{4}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,3},{4,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2,4,5},{3}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,4},{3,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2,5},{3,4}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2},{3,4,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,3,4,5},{2}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3,4},{2,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,3,5},{2,4}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3},{2,4,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,4,5},{2,3}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,4},{2,3,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,5},{2,3,4}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,3,4,5}}
=> [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1},{2,3,4},{5}}
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,5},{2,3},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,3,5},{4}}
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,3},{4,5}}
=> [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,4,5},{2},{3}}
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,4},{2,5},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,4},{2},{3,5}}
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,5},{2,4},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,4,5},{3}}
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,4},{3,5}}
=> [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1,5},{2},{3,4}}
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1},{2,5},{3,4}}
=> [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2},{3,4,5}}
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3} + 1
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,3,4,5,6}}
=> [6] => [6] => ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2,3,4,5},{6}}
=> [5,1] => [1,5] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2,3,4,6},{5}}
=> [5,1] => [1,5] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2,3,4},{5,6}}
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2,3,4},{5},{6}}
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3,5,6},{4}}
=> [5,1] => [1,5] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2,3,5},{4,6}}
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5} + 1
{{1,2,3,5},{4},{6}}
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3,6},{4},{5}}
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3},{4},{5,6}}
=> [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,4,5},{3},{6}}
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,4,6},{3},{5}}
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,4},{3},{5,6}}
=> [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
{{1,2,5,6},{3},{4}}
=> [4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,5},{3},{4,6}}
=> [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
{{1,2,6},{3},{4,5}}
=> [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2},{3},{4,5,6}}
=> [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
{{1,2},{3},{4},{5,6}}
=> [2,1,1,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001876
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 62%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 62%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> ? = 0
{{1,2}}
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,0}
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0}
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1}
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,1}
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,5},{2,4,6}}
=> [3,4,5,6,1,2] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 3
{{1,3,5},{2,4},{6}}
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => ([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2,3,6},{5}}
=> [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,5},{2,3,4,6}}
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 50%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0
{{1,2}}
=> [2,1] => [1,2] => ([],2)
=> 0
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => ([],3)
=> 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => ([],3)
=> 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => ([(1,2)],3)
=> 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => ([],3)
=> 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,2}
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,2}
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,2}
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> 0
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3}
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,5,6},{3}}
=> [2,4,3,5,6,1] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,5},{3},{6}}
=> [2,4,3,5,1,6] => [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3,4,6}}
=> [2,5,4,6,1,3] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3,4},{6}}
=> [2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,6},{3,4,5}}
=> [2,6,4,5,3,1] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3},{4,6}}
=> [2,5,3,6,1,4] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3},{4},{6}}
=> [2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,6},{3,5},{4}}
=> [2,6,5,4,3,1] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,5,6},{4}}
=> [2,1,5,4,6,3] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,6},{3},{4,5}}
=> [2,6,3,5,4,1] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,6},{4},{5}}
=> [2,1,6,4,5,3] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,3,4,5},{2},{6}}
=> [3,2,4,5,1,6] => [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,3,4,6},{2,5}}
=> [3,5,4,6,2,1] => [1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,3,4},{2,5,6}}
=> [3,5,4,1,6,2] => [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,3,4},{2,5},{6}}
=> [3,5,4,1,2,6] => [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001877
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 38%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 38%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> ? = 0
{{1,2}}
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,0}
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0}
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,1}
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,1}
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,1}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,2}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3,5},{2,4},{6}}
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => ([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2,3,6},{5}}
=> [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
{{1,5},{2,3,4,6}}
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001878
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 25% ●values known / values provided: 32%●distinct values known / distinct values provided: 25%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 25% ●values known / values provided: 32%●distinct values known / distinct values provided: 25%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> ? = 0
{{1,2}}
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,0}
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0}
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0}
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0}
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3,5},{2,4},{6}}
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => ([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2,3,6},{5}}
=> [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
{{1,5},{2,3,4,6}}
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001964
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 50%
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0
{{1,2}}
=> [2,1] => [2,1] => ([],2)
=> 0
{{1},{2}}
=> [1,2] => [1,2] => ([(0,1)],2)
=> 0
{{1,2,3}}
=> [2,3,1] => [2,1,3] => ([(0,2),(1,2)],3)
=> 0
{{1,2},{3}}
=> [2,1,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,1}
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => ([],3)
=> 0
{{1},{2,3}}
=> [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,1}
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1
{{1,2,3},{4}}
=> [2,3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 0
{{1,2,4},{3}}
=> [2,4,3,1] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1}
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,1,1,1}
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => ([],4)
=> 0
{{1},{2,3,4}}
=> [1,3,4,2] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,1,1,1}
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,1,1,1}
{{1},{2},{3,4}}
=> [1,2,4,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 0
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 0
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 0
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 0
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 0
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,5,3,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 2
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 0
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => ([],5)
=> 0
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [4,1,3,2,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 0
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [5,1,3,2,4] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,3}
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [2,1,6,3,4,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [2,1,3,5,4,6] => ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [6,2,1,5,3,4] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => [2,1,3,6,4,5] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => [2,6,4,1,3,5] => ([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,5},{3},{6}}
=> [2,4,3,5,1,6] => [2,4,3,5,1,6] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => [2,1,4,3,5,6] => ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [4,2,1,6,3,5] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [6,2,4,1,3,5] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4},{3},{5,6}}
=> [2,4,3,1,6,5] => [4,2,6,3,1,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4},{3},{5},{6}}
=> [2,4,3,1,5,6] => [2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => [5,2,4,3,1,6] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3,4,6}}
=> [2,5,4,6,1,3] => [2,5,1,4,3,6] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3,4},{6}}
=> [2,5,4,3,1,6] => [2,5,4,3,1,6] => ([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => [2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [6,2,4,3,1,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [6,2,1,4,5,3] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,4},{5},{6}}
=> [2,1,4,3,5,6] => [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => [2,5,4,1,3,6] => ([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,5},{3},{4},{6}}
=> [2,5,3,4,1,6] => [2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,5,6},{4}}
=> [2,1,5,4,6,3] => [5,2,4,1,6,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => [2,5,1,3,6,4] => ([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [6,5,2,1,4,3] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001866The nesting alignments of a signed permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001867The number of alignments of type EN of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!