Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001303: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 3
([],3)
=> 1
([(1,2)],3)
=> 3
([(0,2),(1,2)],3)
=> 5
([(0,1),(0,2),(1,2)],3)
=> 7
([],4)
=> 1
([(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> 5
([(0,3),(1,3),(2,3)],4)
=> 9
([(0,3),(1,2)],4)
=> 9
([(0,3),(1,2),(2,3)],4)
=> 9
([(1,2),(1,3),(2,3)],4)
=> 7
([(0,3),(1,2),(1,3),(2,3)],4)
=> 11
([(0,2),(0,3),(1,2),(1,3)],4)
=> 11
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 13
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 15
([],5)
=> 1
([(3,4)],5)
=> 3
([(2,4),(3,4)],5)
=> 5
([(1,4),(2,4),(3,4)],5)
=> 9
([(0,4),(1,4),(2,4),(3,4)],5)
=> 17
([(1,4),(2,3)],5)
=> 9
([(1,4),(2,3),(3,4)],5)
=> 9
([(0,1),(2,4),(3,4)],5)
=> 15
([(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,4),(2,3),(3,4)],5)
=> 15
([(1,4),(2,3),(2,4),(3,4)],5)
=> 11
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 19
([(1,3),(1,4),(2,3),(2,4)],5)
=> 11
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 19
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 13
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 17
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 21
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 23
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 25
([(0,4),(1,3),(2,3),(2,4)],5)
=> 17
([(0,1),(2,3),(2,4),(3,4)],5)
=> 21
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 21
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 25
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 21
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 23
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 25
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 21
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 15
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 23
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 27
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 25
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 27
Description
The number of dominating sets of vertices of a graph. This is, the number of subsets of vertices such that every vertex is either in this subset or adjacent to an element therein [1].
Mp00203: Graphs coneGraphs
St001794: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 11
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 11
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 13
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 15
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 17
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 9
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 19
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 11
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 19
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 13
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 17
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 23
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 25
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 17
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 25
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 21
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 23
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 25
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 23
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 27
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 25
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 27
Description
Half the number of sets of vertices in a graph which are dominating and non-blocking. A set of vertices $U$ in a graph is dominating, if every vertex not in $U$ is adjacent to a vertex in $U$. A set of vertices $U$ in a graph is non-blocking, if every vertex in $U$ is adjacent to a vertex not in $U$. Therefore, a set of vertices is non-blocking if and only if its complement is dominating. In particular, if a set of vertices is dominating and non-blocking, so is its complement.
Mp00203: Graphs coneGraphs
St000422: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 31%
Values
([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 4 = 3 + 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,3,7} + 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,7} + 1
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,7} + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6 = 5 + 1
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6 = 5 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,9,9,9,11,11,13,15} + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8 = 7 + 1
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,3,5,7,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10 = 9 + 1
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000777: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 12%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3
([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7}
([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St001645: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 12%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3
([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7}
([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {3,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
Description
The pebbling number of a connected graph.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000259: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 12%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7} - 1
([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 3 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000260: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 12%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7} - 1
([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 3 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000302: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 12%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7} - 1
([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6 = 7 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {3,5,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
Description
The determinant of the distance matrix of a connected graph.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
Mp00147: Graphs squareGraphs
St000467: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 12%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? = 3 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7} - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7} - 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15} - 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 20 = 21 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31} - 1
Description
The hyper-Wiener index of a connected graph. This is $$ \sum_{\{u,v\}\subseteq V} d(u,v)+d(u,v)^2. $$
Mp00259: Graphs vertex additionGraphs
Mp00247: Graphs de-duplicateGraphs
St000771: Graphs ⟶ ℤResult quality: 6% values known / values provided: 10%distinct values known / distinct values provided: 6%
Values
([],1)
=> ([],2)
=> ([],1)
=> 1
([],2)
=> ([],3)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 3
([],3)
=> ([],4)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,5,7}
([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,5,7}
([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,5,7}
([],4)
=> ([],5)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15}
([],5)
=> ([],6)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(2,3),(2,4),(3,4)],5)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,5,7,9,9,9,11,11,13,15,15,15,17,17,17,19,19,21,21,21,21,21,23,23,23,25,25,25,25,27,27,29,31}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St001330The hat guessing number of a graph.