Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001913
St001913: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 2
[1,1,1]
=> 0
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 1
[2,1,1]
=> 1
[1,1,1,1]
=> 0
[5]
=> 1
[4,1]
=> 2
[3,2]
=> 2
[3,1,1]
=> 1
[2,2,1]
=> 1
[2,1,1,1]
=> 0
[1,1,1,1,1]
=> 0
[6]
=> 1
[5,1]
=> 2
[4,2]
=> 2
[4,1,1]
=> 1
[3,3]
=> 1
[3,2,1]
=> 2
[3,1,1,1]
=> 1
[2,2,2]
=> 1
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 0
[1,1,1,1,1,1]
=> 0
[7]
=> 1
[6,1]
=> 2
[5,2]
=> 2
[5,1,1]
=> 1
[4,3]
=> 2
[4,2,1]
=> 2
[4,1,1,1]
=> 1
[3,3,1]
=> 1
[3,2,2]
=> 2
[3,2,1,1]
=> 1
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 0
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> 0
[8]
=> 1
[7,1]
=> 2
[6,2]
=> 2
[6,1,1]
=> 1
[5,3]
=> 2
[5,2,1]
=> 2
Description
The number of preimages of an integer partition in Bulgarian solitaire. A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row. Partitions without preimages are called garden of eden partitions [1].
Mp00317: Integer partitions odd partsBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
St001629: Integer compositions ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 75%
Values
[1]
=> 1 => [1] => [1] => ? = 1
[2]
=> 0 => [1] => [1] => ? ∊ {1,1}
[1,1]
=> 11 => [2] => [1] => ? ∊ {1,1}
[3]
=> 1 => [1] => [1] => ? ∊ {0,1,2}
[2,1]
=> 01 => [1,1] => [2] => ? ∊ {0,1,2}
[1,1,1]
=> 111 => [3] => [1] => ? ∊ {0,1,2}
[4]
=> 0 => [1] => [1] => ? ∊ {0,1,1,1,2}
[3,1]
=> 11 => [2] => [1] => ? ∊ {0,1,1,1,2}
[2,2]
=> 00 => [2] => [1] => ? ∊ {0,1,1,1,2}
[2,1,1]
=> 011 => [1,2] => [1,1] => ? ∊ {0,1,1,1,2}
[1,1,1,1]
=> 1111 => [4] => [1] => ? ∊ {0,1,1,1,2}
[5]
=> 1 => [1] => [1] => ? ∊ {0,0,1,1,1,2,2}
[4,1]
=> 01 => [1,1] => [2] => ? ∊ {0,0,1,1,1,2,2}
[3,2]
=> 10 => [1,1] => [2] => ? ∊ {0,0,1,1,1,2,2}
[3,1,1]
=> 111 => [3] => [1] => ? ∊ {0,0,1,1,1,2,2}
[2,2,1]
=> 001 => [2,1] => [1,1] => ? ∊ {0,0,1,1,1,2,2}
[2,1,1,1]
=> 0111 => [1,3] => [1,1] => ? ∊ {0,0,1,1,1,2,2}
[1,1,1,1,1]
=> 11111 => [5] => [1] => ? ∊ {0,0,1,1,1,2,2}
[6]
=> 0 => [1] => [1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[5,1]
=> 11 => [2] => [1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[4,2]
=> 00 => [2] => [1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[4,1,1]
=> 011 => [1,2] => [1,1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[3,3]
=> 11 => [2] => [1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[3,2,1]
=> 101 => [1,1,1] => [3] => 1
[3,1,1,1]
=> 1111 => [4] => [1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[2,2,2]
=> 000 => [3] => [1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[2,2,1,1]
=> 0011 => [2,2] => [2] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[2,1,1,1,1]
=> 01111 => [1,4] => [1,1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[1,1,1,1,1,1]
=> 111111 => [6] => [1] => ? ∊ {0,0,0,1,1,1,1,2,2,2}
[7]
=> 1 => [1] => [1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[6,1]
=> 01 => [1,1] => [2] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[5,2]
=> 10 => [1,1] => [2] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[5,1,1]
=> 111 => [3] => [1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[4,3]
=> 01 => [1,1] => [2] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[4,2,1]
=> 001 => [2,1] => [1,1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[4,1,1,1]
=> 0111 => [1,3] => [1,1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[3,3,1]
=> 111 => [3] => [1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[3,2,2]
=> 100 => [1,2] => [1,1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[3,2,1,1]
=> 1011 => [1,1,2] => [2,1] => 0
[3,1,1,1,1]
=> 11111 => [5] => [1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[2,2,2,1]
=> 0001 => [3,1] => [1,1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[2,2,1,1,1]
=> 00111 => [2,3] => [1,1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[2,1,1,1,1,1]
=> 011111 => [1,5] => [1,1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[1,1,1,1,1,1,1]
=> 1111111 => [7] => [1] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2}
[8]
=> 0 => [1] => [1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[7,1]
=> 11 => [2] => [1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[6,2]
=> 00 => [2] => [1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[6,1,1]
=> 011 => [1,2] => [1,1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[5,3]
=> 11 => [2] => [1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[5,2,1]
=> 101 => [1,1,1] => [3] => 1
[5,1,1,1]
=> 1111 => [4] => [1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[4,4]
=> 00 => [2] => [1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[4,3,1]
=> 011 => [1,2] => [1,1] => ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2}
[3,2,2,1]
=> 1001 => [1,2,1] => [1,1,1] => 1
[3,2,1,1,1]
=> 10111 => [1,1,3] => [2,1] => 0
[5,2,1,1]
=> 1011 => [1,1,2] => [2,1] => 0
[4,3,2]
=> 010 => [1,1,1] => [3] => 1
[3,3,2,1]
=> 1101 => [2,1,1] => [1,2] => 0
[3,2,2,1,1]
=> 10011 => [1,2,2] => [1,2] => 0
[3,2,1,1,1,1]
=> 101111 => [1,1,4] => [2,1] => 0
[7,2,1]
=> 101 => [1,1,1] => [3] => 1
[5,4,1]
=> 101 => [1,1,1] => [3] => 1
[5,2,2,1]
=> 1001 => [1,2,1] => [1,1,1] => 1
[5,2,1,1,1]
=> 10111 => [1,1,3] => [2,1] => 0
[4,3,2,1]
=> 0101 => [1,1,1,1] => [4] => 1
[3,3,2,1,1]
=> 11011 => [2,1,2] => [1,1,1] => 1
[3,2,2,2,1]
=> 10001 => [1,3,1] => [1,1,1] => 1
[3,2,2,1,1,1]
=> 100111 => [1,2,3] => [1,1,1] => 1
[3,2,1,1,1,1,1]
=> 1011111 => [1,1,5] => [2,1] => 0
[7,2,1,1]
=> 1011 => [1,1,2] => [2,1] => 0
[6,3,2]
=> 010 => [1,1,1] => [3] => 1
[5,4,1,1]
=> 1011 => [1,1,2] => [2,1] => 0
[5,3,2,1]
=> 1101 => [2,1,1] => [1,2] => 0
[5,2,2,1,1]
=> 10011 => [1,2,2] => [1,2] => 0
[5,2,1,1,1,1]
=> 101111 => [1,1,4] => [2,1] => 0
[4,3,2,2]
=> 0100 => [1,1,2] => [2,1] => 0
[4,3,2,1,1]
=> 01011 => [1,1,1,2] => [3,1] => 0
[3,3,2,2,1]
=> 11001 => [2,2,1] => [2,1] => 0
[3,3,2,1,1,1]
=> 110111 => [2,1,3] => [1,1,1] => 1
[3,2,2,2,1,1]
=> 100011 => [1,3,2] => [1,1,1] => 1
[3,2,2,1,1,1,1]
=> 1001111 => [1,2,4] => [1,1,1] => 1
[3,2,1,1,1,1,1,1]
=> 10111111 => [1,1,6] => [2,1] => 0
[9,2,1]
=> 101 => [1,1,1] => [3] => 1
[7,4,1]
=> 101 => [1,1,1] => [3] => 1
[7,2,2,1]
=> 1001 => [1,2,1] => [1,1,1] => 1
[7,2,1,1,1]
=> 10111 => [1,1,3] => [2,1] => 0
[6,3,2,1]
=> 0101 => [1,1,1,1] => [4] => 1
[5,4,3]
=> 101 => [1,1,1] => [3] => 1
[5,4,2,1]
=> 1001 => [1,2,1] => [1,1,1] => 1
[5,4,1,1,1]
=> 10111 => [1,1,3] => [2,1] => 0
[5,3,2,1,1]
=> 11011 => [2,1,2] => [1,1,1] => 1
[5,2,2,2,1]
=> 10001 => [1,3,1] => [1,1,1] => 1
[5,2,2,1,1,1]
=> 100111 => [1,2,3] => [1,1,1] => 1
[5,2,1,1,1,1,1]
=> 1011111 => [1,1,5] => [2,1] => 0
[4,3,3,2]
=> 0110 => [1,2,1] => [1,1,1] => 1
[4,3,2,2,1]
=> 01001 => [1,1,2,1] => [2,1,1] => 1
[4,3,2,1,1,1]
=> 010111 => [1,1,1,3] => [3,1] => 0
[3,3,3,2,1]
=> 11101 => [3,1,1] => [1,2] => 0
[3,3,2,2,1,1]
=> 110011 => [2,2,2] => [3] => 1
[3,3,2,1,1,1,1]
=> 1101111 => [2,1,4] => [1,1,1] => 1
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Matching statistic: St001195
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00028: Dyck paths reverseDyck paths
St001195: Dyck paths ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 50%
Values
[1]
=> []
=> []
=> []
=> ? = 1
[2]
=> []
=> []
=> []
=> ? ∊ {1,1}
[1,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1}
[3]
=> []
=> []
=> []
=> ? ∊ {0,1,2}
[2,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {0,1,2}
[1,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {0,1,2}
[4]
=> []
=> []
=> []
=> ? ∊ {0,1,1,2}
[3,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {0,1,1,2}
[2,2]
=> [2]
=> [1,0,1,0]
=> [1,0,1,0]
=> ? ∊ {0,1,1,2}
[2,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {0,1,1,2}
[1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[5]
=> []
=> []
=> []
=> ? ∊ {0,1,2,2}
[4,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {0,1,2,2}
[3,2]
=> [2]
=> [1,0,1,0]
=> [1,0,1,0]
=> ? ∊ {0,1,2,2}
[3,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {0,1,2,2}
[2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[6]
=> []
=> []
=> []
=> ? ∊ {1,2,2,2}
[5,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,2,2,2}
[4,2]
=> [2]
=> [1,0,1,0]
=> [1,0,1,0]
=> ? ∊ {1,2,2,2}
[4,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,2}
[3,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[7]
=> []
=> []
=> []
=> ? ∊ {2,2,2,2,2}
[6,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {2,2,2,2,2}
[5,2]
=> [2]
=> [1,0,1,0]
=> [1,0,1,0]
=> ? ∊ {2,2,2,2,2}
[5,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {2,2,2,2,2}
[4,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[3,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[3,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2}
[8]
=> []
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2}
[7,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {2,2,2,2,2,2,2}
[6,2]
=> [2]
=> [1,0,1,0]
=> [1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2}
[6,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2}
[5,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[5,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[4,4]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[4,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[4,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[3,3,2]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[2,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2}
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2}
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2}
[9]
=> []
=> []
=> []
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[8,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[7,2]
=> [2]
=> [1,0,1,0]
=> [1,0,1,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[7,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[6,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[6,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[5,4]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[5,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[5,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[5,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,4,1]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[4,3,2]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[4,3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[4,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[4,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[4,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[3,3,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[3,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[3,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[2,2,2,1,1,1]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[2,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,3}
[10]
=> []
=> []
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[9,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[8,2]
=> [2]
=> [1,0,1,0]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[8,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[4,4,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[4,3,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[4,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[4,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
[3,3,2,1,1]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,3}
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Mp00317: Integer partitions odd partsBinary words
Mp00234: Binary words valleys-to-peaksBinary words
Mp00105: Binary words complementBinary words
St001491: Binary words ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 75%
Values
[1]
=> 1 => 1 => 0 => ? = 1
[2]
=> 0 => 1 => 0 => ? ∊ {1,1}
[1,1]
=> 11 => 11 => 00 => ? ∊ {1,1}
[3]
=> 1 => 1 => 0 => ? ∊ {0,2}
[2,1]
=> 01 => 10 => 01 => 1
[1,1,1]
=> 111 => 111 => 000 => ? ∊ {0,2}
[4]
=> 0 => 1 => 0 => ? ∊ {0,1,2}
[3,1]
=> 11 => 11 => 00 => ? ∊ {0,1,2}
[2,2]
=> 00 => 01 => 10 => 1
[2,1,1]
=> 011 => 101 => 010 => 1
[1,1,1,1]
=> 1111 => 1111 => 0000 => ? ∊ {0,1,2}
[5]
=> 1 => 1 => 0 => ? ∊ {0,0,1,2}
[4,1]
=> 01 => 10 => 01 => 1
[3,2]
=> 10 => 11 => 00 => ? ∊ {0,0,1,2}
[3,1,1]
=> 111 => 111 => 000 => ? ∊ {0,0,1,2}
[2,2,1]
=> 001 => 010 => 101 => 2
[2,1,1,1]
=> 0111 => 1011 => 0100 => 1
[1,1,1,1,1]
=> 11111 => 11111 => 00000 => ? ∊ {0,0,1,2}
[6]
=> 0 => 1 => 0 => ? ∊ {0,0,1,2,2,2}
[5,1]
=> 11 => 11 => 00 => ? ∊ {0,0,1,2,2,2}
[4,2]
=> 00 => 01 => 10 => 1
[4,1,1]
=> 011 => 101 => 010 => 1
[3,3]
=> 11 => 11 => 00 => ? ∊ {0,0,1,2,2,2}
[3,2,1]
=> 101 => 110 => 001 => 1
[3,1,1,1]
=> 1111 => 1111 => 0000 => ? ∊ {0,0,1,2,2,2}
[2,2,2]
=> 000 => 001 => 110 => 1
[2,2,1,1]
=> 0011 => 0101 => 1010 => 0
[2,1,1,1,1]
=> 01111 => 10111 => 01000 => ? ∊ {0,0,1,2,2,2}
[1,1,1,1,1,1]
=> 111111 => 111111 => 000000 => ? ∊ {0,0,1,2,2,2}
[7]
=> 1 => 1 => 0 => ? ∊ {0,0,0,0,0,2,2,2}
[6,1]
=> 01 => 10 => 01 => 1
[5,2]
=> 10 => 11 => 00 => ? ∊ {0,0,0,0,0,2,2,2}
[5,1,1]
=> 111 => 111 => 000 => ? ∊ {0,0,0,0,0,2,2,2}
[4,3]
=> 01 => 10 => 01 => 1
[4,2,1]
=> 001 => 010 => 101 => 2
[4,1,1,1]
=> 0111 => 1011 => 0100 => 1
[3,3,1]
=> 111 => 111 => 000 => ? ∊ {0,0,0,0,0,2,2,2}
[3,2,2]
=> 100 => 101 => 010 => 1
[3,2,1,1]
=> 1011 => 1101 => 0010 => 1
[3,1,1,1,1]
=> 11111 => 11111 => 00000 => ? ∊ {0,0,0,0,0,2,2,2}
[2,2,2,1]
=> 0001 => 0010 => 1101 => 2
[2,2,1,1,1]
=> 00111 => 01011 => 10100 => ? ∊ {0,0,0,0,0,2,2,2}
[2,1,1,1,1,1]
=> 011111 => 101111 => 010000 => ? ∊ {0,0,0,0,0,2,2,2}
[1,1,1,1,1,1,1]
=> 1111111 => 1111111 => 0000000 => ? ∊ {0,0,0,0,0,2,2,2}
[8]
=> 0 => 1 => 0 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[7,1]
=> 11 => 11 => 00 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[6,2]
=> 00 => 01 => 10 => 1
[6,1,1]
=> 011 => 101 => 010 => 1
[5,3]
=> 11 => 11 => 00 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[5,2,1]
=> 101 => 110 => 001 => 1
[5,1,1,1]
=> 1111 => 1111 => 0000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[4,4]
=> 00 => 01 => 10 => 1
[4,3,1]
=> 011 => 101 => 010 => 1
[4,2,2]
=> 000 => 001 => 110 => 1
[4,2,1,1]
=> 0011 => 0101 => 1010 => 0
[4,1,1,1,1]
=> 01111 => 10111 => 01000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[3,3,2]
=> 110 => 111 => 000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[3,3,1,1]
=> 1111 => 1111 => 0000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[3,2,2,1]
=> 1001 => 1010 => 0101 => 0
[3,2,1,1,1]
=> 10111 => 11011 => 00100 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[3,1,1,1,1,1]
=> 111111 => 111111 => 000000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[2,2,2,2]
=> 0000 => 0001 => 1110 => 2
[2,2,2,1,1]
=> 00011 => 00101 => 11010 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[2,2,1,1,1,1]
=> 001111 => 010111 => 101000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[2,1,1,1,1,1,1]
=> 0111111 => 1011111 => 0100000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[1,1,1,1,1,1,1,1]
=> 11111111 => 11111111 => 00000000 => ? ∊ {0,0,0,0,0,1,1,2,2,2,2,2,2}
[9]
=> 1 => 1 => 0 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[8,1]
=> 01 => 10 => 01 => 1
[7,2]
=> 10 => 11 => 00 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[7,1,1]
=> 111 => 111 => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[6,3]
=> 01 => 10 => 01 => 1
[6,2,1]
=> 001 => 010 => 101 => 2
[6,1,1,1]
=> 0111 => 1011 => 0100 => 1
[5,4]
=> 10 => 11 => 00 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[5,3,1]
=> 111 => 111 => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[5,2,2]
=> 100 => 101 => 010 => 1
[5,2,1,1]
=> 1011 => 1101 => 0010 => 1
[5,1,1,1,1]
=> 11111 => 11111 => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[4,4,1]
=> 001 => 010 => 101 => 2
[4,3,2]
=> 010 => 101 => 010 => 1
[4,3,1,1]
=> 0111 => 1011 => 0100 => 1
[4,2,2,1]
=> 0001 => 0010 => 1101 => 2
[4,2,1,1,1]
=> 00111 => 01011 => 10100 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[4,1,1,1,1,1]
=> 011111 => 101111 => 010000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[3,3,3]
=> 111 => 111 => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[3,3,2,1]
=> 1101 => 1110 => 0001 => 1
[3,3,1,1,1]
=> 11111 => 11111 => 00000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[3,2,2,2]
=> 1000 => 1001 => 0110 => 2
[3,2,2,1,1]
=> 10011 => 10101 => 01010 => ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3}
[8,2]
=> 00 => 01 => 10 => 1
[8,1,1]
=> 011 => 101 => 010 => 1
[7,2,1]
=> 101 => 110 => 001 => 1
[6,4]
=> 00 => 01 => 10 => 1
[6,3,1]
=> 011 => 101 => 010 => 1
[6,2,2]
=> 000 => 001 => 110 => 1
[6,2,1,1]
=> 0011 => 0101 => 1010 => 0
[5,4,1]
=> 101 => 110 => 001 => 1
[5,2,2,1]
=> 1001 => 1010 => 0101 => 0
[4,4,2]
=> 000 => 001 => 110 => 1
[4,4,1,1]
=> 0011 => 0101 => 1010 => 0
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St001123
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001123: Integer partitions ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? = 1
[2]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {1,1}
[1,1]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {1,1}
[3]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,1,2}
[2,1]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,1,2}
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,1,2}
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> ? ∊ {0,1,2}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,1,2}
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,1,2}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[3,3,3,3],[2]]
=> [2]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,1,2,2}
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,1,2,2}
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {0,0,1,2,2}
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,1,2,2}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> ? ∊ {0,0,1,2,2}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[4,4,4,4],[3]]
=> [3]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[4,4,4],[3]]
=> [3]
=> 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,2,2,2}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2}
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {0,1,1,2,2,2}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,4],[3]]
=> [3]
=> 0
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[3,3,3,3,3],[2]]
=> [2]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1]]
=> [2,1]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[3,3,3,2],[2]]
=> [2]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,2,2,2,2,2}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> ? ∊ {0,0,0,2,2,2,2,2}
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {0,0,0,2,2,2,2,2}
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> [1]
=> ? ∊ {0,0,0,2,2,2,2,2}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,2,2,2,2,2}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> ? ∊ {0,0,0,2,2,2,2,2}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,1],[]]
=> []
=> ? ∊ {0,0,0,2,2,2,2,2}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[4,4,4,4,1],[]]
=> []
=> ? ∊ {0,0,0,2,2,2,2,2}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[5,5,5,5,5],[4]]
=> [4]
=> 0
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[5,5,5,5],[4]]
=> [4]
=> 0
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[4,4,4,3],[3]]
=> [3]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[4,4,4,4],[3,1]]
=> [3,1]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[4,4,3],[3]]
=> [3]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [3,1]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[4,3,3],[2]]
=> [2]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> []
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> []
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[4,4,3,1],[]]
=> []
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [1,1]
=> 1
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> [1]
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [[4,4,4,1],[1]]
=> [1]
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[5,5,5,1],[]]
=> []
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [[5,5,5,5,1],[]]
=> []
=> ? ∊ {0,0,1,2,2,2,2,2,2,2}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[5,5,5,5,5,5],[4]]
=> [4]
=> 0
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,4,4],[3]]
=> [3]
=> 0
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [[4,4,4,4,4],[3,1]]
=> [3,1]
=> 1
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,3],[3]]
=> [3]
=> 0
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[3,3,3,3,3],[2,1]]
=> [2,1]
=> 1
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [[5,5,5],[4]]
=> [4]
=> 0
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[3,3,3,3,2],[2]]
=> [2]
=> 1
[5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [[3,3,3,3],[2,2]]
=> [2,2]
=> 0
[5,3,1]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [[3,3,2,2],[2]]
=> [2]
=> 1
[5,2,2]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1]]
=> [2,1]
=> 1
[5,2,1,1]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [2,1,1]
=> 1
[5,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 1
[4,4,1]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [[3,2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [[3,3,3,3,1],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> [1,1]
=> 1
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [1,1,1]
=> 0
[3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [[5,5,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[4,4,4,4,1],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [[3,3,3,2,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[4,4,4,3,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[4,4,4,4,4,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,2,2,2,2,2,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[6,6,6,6,6,6],[5]]
=> [5]
=> 0
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [[6,6,6,6,6],[5]]
=> [5]
=> 0
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [[5,5,5,5,4],[4]]
=> [4]
=> 0
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [[5,5,5,5,5],[4,1]]
=> [4,1]
=> 0
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [[5,5,5,4],[4]]
=> [4]
=> 0
Description
The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{21^{n-2}}$, for $\lambda\vdash n$.
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00103: Dyck paths peeling mapDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,2}
[2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,2}
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,2}
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,2}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,2,2,2}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2}
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2}
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 1
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 1
[2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1
[5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,4,2]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 1
[3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 1
[3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 1
[2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 1
[5,4,2]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,3,3]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
[4,4,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,3,3,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 1
[4,3,2,2]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 1
[3,3,3,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
[3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> 1
[3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 1
[3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 1
[2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 1
[5,5,2]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,4,3]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[4,4,3,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 1
[4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 1
[4,3,3,2]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> 2
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> 1
[3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 1
[2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 1
[5,5,3]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00103: Dyck paths peeling mapDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001498: Dyck paths ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,1}
[3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,2}
[2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,2}
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,2}
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,1,1,1,2}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,2}
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2}
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,2,2,2}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,2}
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 0
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 0
[5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 0
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 0
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0
[3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 0
[2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0
[2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0
[5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,4,2]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 1
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0
[3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 1
[3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0
[3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 0
[3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 0
[2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0
[2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 0
[5,4,2]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[5,3,3]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 1
[4,4,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,3,3,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[4,3,2,2]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0
[3,3,3,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 0
[3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 0
[3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 0
[2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> 0
[5,5,2]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[5,4,3]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
[4,4,3,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0
[4,3,3,2]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> 0
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 1
[3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> 0
[3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 0
[2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 0
[5,5,3]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
Description
The normalised height of a Nakayama algebra with magnitude 1. We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St001964: Posets ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {0,2} - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,2} - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? ∊ {0,0,2,2} - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {0,0,2,2} - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {0,0,2,2} - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {0,0,2,2} - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,5),(0,6),(1,10),(2,11),(3,4),(3,14),(4,8),(5,2),(5,13),(6,3),(6,13),(8,9),(9,7),(10,7),(11,1),(11,12),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? ∊ {0,0,0,1,1,1,1,2,2,2} - 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,13),(2,4),(2,17),(3,5),(3,18),(4,9),(5,12),(6,2),(6,15),(7,3),(7,15),(9,10),(10,11),(11,8),(12,1),(12,16),(13,8),(14,10),(14,16),(15,17),(15,18),(16,11),(16,13),(17,9),(17,14),(18,12),(18,14)],19)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,6),(1,11),(2,8),(3,9),(4,3),(4,7),(5,1),(5,7),(6,4),(6,5),(7,9),(7,11),(9,10),(10,8),(11,2),(11,10)],12)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ([(0,6),(0,7),(1,4),(1,16),(2,5),(2,15),(3,13),(4,12),(5,3),(5,19),(6,1),(6,17),(7,2),(7,17),(9,11),(10,8),(11,8),(12,9),(13,10),(14,9),(14,18),(15,14),(15,19),(16,12),(16,14),(17,15),(17,16),(18,10),(18,11),(19,13),(19,18)],20)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2} - 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,15),(2,4),(2,22),(3,5),(3,23),(4,6),(4,21),(5,14),(6,10),(7,2),(7,20),(8,3),(8,20),(10,11),(11,12),(12,9),(13,9),(14,1),(14,19),(15,13),(16,11),(16,17),(17,12),(17,13),(18,16),(18,19),(19,15),(19,17),(20,22),(20,23),(21,10),(21,16),(22,18),(22,21),(23,14),(23,18)],24)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,1),(1,3),(1,4),(2,12),(3,7),(3,15),(4,6),(4,15),(5,9),(6,11),(7,5),(7,13),(9,10),(10,8),(11,2),(11,14),(12,8),(13,9),(13,14),(14,10),(14,12),(15,11),(15,13)],16)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,11),(3,10),(4,9),(5,3),(5,7),(6,4),(6,7),(7,9),(7,10),(8,11),(9,8),(10,2),(10,8),(11,1)],12)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,6),(1,11),(2,8),(3,9),(4,3),(4,7),(5,1),(5,7),(6,4),(6,5),(7,9),(7,11),(9,10),(10,8),(11,2),(11,10)],12)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,1),(1,2),(1,3),(2,5),(2,13),(3,7),(3,13),(4,12),(5,11),(6,4),(6,15),(7,6),(7,14),(9,10),(10,8),(11,9),(12,8),(13,11),(13,14),(14,9),(14,15),(15,10),(15,12)],16)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ([(0,7),(0,8),(1,6),(1,19),(2,4),(2,18),(3,14),(4,15),(5,3),(5,23),(6,5),(6,22),(7,1),(7,20),(8,2),(8,20),(10,11),(11,12),(12,9),(13,9),(14,13),(15,10),(16,12),(16,13),(17,11),(17,16),(18,15),(18,21),(19,21),(19,22),(20,18),(20,19),(21,10),(21,17),(22,17),(22,23),(23,14),(23,16)],24)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2} - 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> ([(0,8),(0,9),(1,12),(2,7),(2,23),(3,6),(3,22),(4,17),(5,16),(6,5),(6,28),(7,4),(7,27),(8,2),(8,24),(9,3),(9,24),(11,13),(12,15),(13,14),(14,10),(15,10),(16,1),(16,26),(17,11),(18,20),(18,26),(19,18),(19,25),(20,13),(20,21),(21,14),(21,15),(22,19),(22,28),(23,19),(23,27),(24,22),(24,23),(25,11),(25,20),(26,12),(26,21),(27,17),(27,25),(28,16),(28,18)],29)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3} - 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ([(0,1),(1,3),(1,4),(2,12),(3,7),(3,16),(4,8),(4,16),(5,13),(6,14),(7,5),(7,18),(8,6),(8,19),(10,11),(11,9),(12,9),(13,10),(14,2),(14,17),(15,10),(15,17),(16,18),(16,19),(17,11),(17,12),(18,13),(18,15),(19,14),(19,15)],20)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3} - 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ([(0,6),(0,7),(2,11),(3,12),(4,5),(4,15),(5,9),(6,3),(6,14),(7,4),(7,14),(8,1),(9,10),(10,8),(11,8),(12,2),(12,13),(13,10),(13,11),(14,12),(14,15),(15,9),(15,13)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3} - 1
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,1),(1,3),(1,4),(2,12),(3,7),(3,15),(4,6),(4,15),(5,9),(6,11),(7,5),(7,13),(9,10),(10,8),(11,2),(11,14),(12,8),(13,9),(13,14),(14,10),(14,12),(15,11),(15,13)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3} - 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(2,11),(3,10),(4,9),(5,3),(5,7),(6,4),(6,7),(7,9),(7,10),(8,11),(9,8),(10,2),(10,8),(11,1)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3} - 1
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3} - 1
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,4,2,1]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,3,3,1]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,3,3,1]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,3,2,2]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,4,3,1]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,4,2,2]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,3,3,2]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[4,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
Description
The interval resolution global dimension of a poset. This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St000741
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
St000741: Graphs ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1}
[1,1]
=> [1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1}
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1}
[2,1]
=> [1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1}
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,2}
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,2}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,2}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {0,0,1,2,2}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,1,2,2}
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,1,2,2}
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,1,2,2}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {0,0,1,2,2}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => ([(5,6)],7)
=> ? ∊ {0,0,0,1,2,2}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,0,0,1,2,2}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,0,1,2,2}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ([(5,6)],7)
=> ? ∊ {0,0,0,1,2,2}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,8,7] => ([(6,7)],8)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [4,1,2,3,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,4,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ([(6,7)],8)
=> ? ∊ {0,0,0,0,0,1,2,2,2,2,2}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,7,9,8] => ([(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,6,2,3,4,7,5] => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [3,1,2,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,3,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,1,7,3,4,5,6] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5,7] => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,1,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8,9] => ([(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,7,8,10,9] => ([(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,9,7] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,7,2,3,4,5,8,6] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,8,7] => ([(0,1),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,2,6,3,4,7,5] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
[5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> 1
[5,2,2]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,2,3,6,5] => ([(1,2),(3,5),(4,5)],6)
=> 1
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 1
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 1
[3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,3,4,6] => ([(1,2),(3,5),(4,5)],6)
=> 1
[2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> 1
[5,3,1,1]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6)
=> 1
[4,4,1,1]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> 1
[4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> 1
[4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,1,4,2,5,6] => ([(2,5),(3,4),(4,5)],6)
=> 1
[3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6)
=> 1
[5,4,1,1]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [3,1,2,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> 1
[5,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> 1
[5,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> 1
[4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> 1
[4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> 1
[3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> 1
[5,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> 1
[5,3,3,1]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> 1
[5,3,2,2]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> 1
[5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> 1
[4,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> 1
[4,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> 1
[5,4,2,2]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> 1
[5,3,3,2]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> 1
Description
The Colin de Verdière graph invariant.
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00065: Permutations permutation posetPosets
St001632: Posets ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0]
=> [1] => ([],1)
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,2] => ([(0,1)],2)
=> 1
[1,1]
=> [1,1,0,0]
=> [2,1] => ([],2)
=> ? = 1
[3]
=> [1,0,1,0,1,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ? = 0
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 1
[2,2]
=> [1,1,1,0,0,0]
=> [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,1}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {0,1}
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> 2
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 0
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 0
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,2}
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,2}
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> 0
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ? ∊ {0,0,2}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => ([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7)
=> ? ∊ {0,0,0,0,1,2}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => ([(0,5),(3,6),(4,1),(5,3),(6,2),(6,4)],7)
=> ? ∊ {0,0,0,0,1,2}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> 2
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ([(0,5),(3,4),(4,1),(5,6),(6,2),(6,3)],7)
=> ? ∊ {0,0,0,0,1,2}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => ([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> 2
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ([(0,6),(3,5),(4,3),(5,1),(6,2),(6,4)],7)
=> ? ∊ {0,0,0,0,1,2}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> 0
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,1,2}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? ∊ {0,0,0,0,1,2}
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => ([(0,5),(3,6),(4,1),(5,3),(6,2),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => ([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> 1
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,4,7,5] => ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> 2
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> 1
[4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,3,6,7,4] => ([(0,5),(2,6),(4,1),(4,6),(5,2),(5,4),(6,3)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> 1
[3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> 1
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> 2
[3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,6,7,3] => ([(0,3),(0,5),(3,6),(4,2),(5,1),(5,6),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,8,3] => ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> 1
[2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,3),(1,6),(4,2),(5,4),(6,5)],7)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => ([(1,7),(3,4),(4,6),(5,3),(6,2),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,2,2,2,2,2}
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => ([(0,7),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(8,2)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,6,7] => ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[7,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,6,8,9,7] => ([(0,7),(3,5),(4,3),(5,8),(6,1),(7,4),(8,2),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[6,3]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,4,5] => ([(0,5),(3,2),(4,1),(5,6),(6,3),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[6,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,4,7,5,8,6] => ([(0,5),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[6,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,5,7,8,9,6] => ([(0,7),(3,4),(4,8),(5,6),(6,1),(7,3),(8,2),(8,5)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => ([(0,5),(2,6),(3,2),(4,1),(4,6),(5,3),(5,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => ([(0,5),(3,4),(4,1),(5,6),(6,2),(6,3)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,3,6,4,7,8,5] => ([(0,5),(2,7),(4,1),(4,7),(5,6),(6,2),(6,4),(7,3)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,9,5] => ([(0,7),(3,6),(4,8),(5,3),(6,1),(7,4),(8,2),(8,5)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,4,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> 1
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> 2
[4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,5,2,6,7,3] => ([(0,4),(0,5),(2,6),(4,2),(5,1),(5,6),(6,3)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => ([(0,5),(2,6),(3,4),(4,1),(4,6),(5,2),(5,3)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,3,6,7,8,4] => ([(0,6),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,9,4] => ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,8),(8,2),(8,5)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,1,2,6,4] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> 1
[3,3,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,4,1,5,6,7,2] => ([(0,4),(1,3),(1,6),(4,6),(5,2),(6,5)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,3,6,7,4] => ([(0,3),(0,5),(3,6),(4,1),(4,6),(5,4),(6,2)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,2,1,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,2,5,6,7,8,3] => ([(0,3),(0,6),(3,7),(4,2),(5,4),(6,1),(6,7),(7,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,8,9,3] => ([(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,2),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> 2
[4,4,2]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> 2
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> 1
[3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> 1
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> 1
[3,3,3,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,1,6,2,3,4] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> 0
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000782The indicator function of whether a given perfect matching is an L & P matching. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000454The largest eigenvalue of a graph if it is integral. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.