searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001945
St001945: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2
['A',2]
=> 4
['B',2]
=> 5
['G',2]
=> 7
['A',3]
=> 9
['B',3]
=> 16
['C',3]
=> 16
['A',4]
=> 16
['B',4]
=> 54
['C',4]
=> 54
['D',4]
=> 27
['F',4]
=> 78
['A',5]
=> 29
['B',5]
=> 140
['C',5]
=> 140
['D',5]
=> 78
Description
The number of non-isomorphic subgroups of the Weyl group of a finite Cartan type.
This statistic returns the number of non-isomorphic abstract groups.
See [[St001155]] for the number of conjugacy classes of subgroups.
Matching statistic: St001827
Values
['A',1]
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 4 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 5 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 7 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 14 = 16 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? ∊ {9,16} - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? ∊ {9,16} - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? ∊ {16,27,54,54,78} - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ? ∊ {16,27,54,54,78} - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ? ∊ {16,27,54,54,78} - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ? ∊ {16,27,54,54,78} - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ? ∊ {16,27,54,54,78} - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ? ∊ {29,78,140,140} - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ? ∊ {29,78,140,140} - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ? ∊ {29,78,140,140} - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ? ∊ {29,78,140,140} - 2
Description
The number of two-component spanning forests of a graph.
A '''spanning subgraph''' is a subgraph which contains all vertices of the ambient graph. A '''forest''' is a graph which contains no cycles, and has any number of connected components. A '''two-component spanning forest''' is a spanning subgraph which contains no cycles and has two connected components.
Matching statistic: St001218
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001218: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 45%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001218: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 45%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 3 = 2 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 5 = 4 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 8 = 7 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 10 = 9 + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? ∊ {16,16} + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? ∊ {16,16} + 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {16,27,54,54,78} + 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {16,27,54,54,78} + 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {16,27,54,54,78} + 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {16,27,54,54,78} + 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? ∊ {16,27,54,54,78} + 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {29,78,140,140} + 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? ∊ {29,78,140,140} + 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? ∊ {29,78,140,140} + 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? ∊ {29,78,140,140} + 1
Description
Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1.
It returns zero in case there is no such k.
Matching statistic: St001317
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 7 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 7 = 9 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {16,16} - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {16,16} - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ([(0,8),(0,10),(1,7),(1,10),(2,5),(2,6),(2,10),(3,7),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,10),(8,10),(9,10)],11)
=> ? ∊ {16,27,54,54,78} - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {16,27,54,54,78} - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {16,27,54,54,78} - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ([(0,11),(0,12),(1,10),(1,12),(2,9),(2,12),(3,8),(3,12),(4,8),(4,9),(4,10),(4,12),(5,8),(5,9),(5,11),(5,12),(6,8),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? ∊ {16,27,54,54,78} - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ([(0,15),(0,24),(1,16),(1,24),(2,9),(2,24),(3,15),(3,22),(3,24),(4,16),(4,22),(4,24),(5,17),(5,19),(5,24),(6,12),(6,17),(6,24),(7,9),(7,12),(7,24),(8,13),(8,18),(8,24),(9,24),(10,18),(10,19),(10,22),(10,24),(11,20),(11,21),(11,23),(11,24),(12,14),(12,24),(13,14),(13,23),(13,24),(14,17),(14,24),(15,20),(15,24),(16,21),(16,24),(17,23),(17,24),(18,20),(18,23),(18,24),(19,21),(19,23),(19,24),(20,22),(20,24),(21,22),(21,24),(22,24),(23,24)],25)
=> ? ∊ {16,27,54,54,78} - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,11),(0,15),(1,10),(1,15),(2,8),(2,9),(2,15),(3,10),(3,13),(3,15),(4,11),(4,14),(4,15),(5,13),(5,14),(5,15),(6,8),(6,10),(6,13),(6,15),(7,9),(7,11),(7,14),(7,15),(8,12),(8,15),(9,12),(9,15),(10,15),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? ∊ {29,78,140,140} - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {29,78,140,140} - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {29,78,140,140} - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ([(0,17),(0,20),(1,16),(1,20),(2,11),(2,20),(3,10),(3,20),(4,10),(4,18),(4,20),(5,11),(5,19),(5,20),(6,16),(6,17),(6,18),(6,20),(7,16),(7,17),(7,19),(7,20),(8,12),(8,13),(8,14),(8,20),(9,12),(9,13),(9,15),(9,20),(10,12),(10,20),(11,13),(11,20),(12,18),(12,20),(13,19),(13,20),(14,16),(14,18),(14,19),(14,20),(15,17),(15,18),(15,19),(15,20),(16,20),(17,20),(18,20),(19,20)],21)
=> ? ∊ {29,78,140,140} - 2
Description
The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph.
A graph is a forest if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,c)$ and $(b,c)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001798
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 7 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 9 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {16,16} - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {16,16} - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,10),(1,2),(1,7),(1,9),(1,10),(2,6),(2,8),(2,10),(3,4),(3,6),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9),(8,10),(9,10)],11)
=> ? ∊ {16,27,54,54,78} - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {16,27,54,54,78} - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {16,27,54,54,78} - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,12),(1,12),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,11),(3,12),(4,5),(4,7),(4,10),(4,12),(5,6),(5,9),(5,12),(6,7),(6,8),(6,10),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {16,27,54,54,78} - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,24),(1,24),(2,24),(3,24),(4,8),(4,24),(5,20),(5,23),(5,24),(6,7),(6,23),(6,24),(7,8),(7,20),(7,24),(8,23),(8,24),(9,18),(9,19),(9,21),(9,22),(9,24),(10,11),(10,18),(10,21),(10,22),(10,24),(11,19),(11,21),(11,22),(11,24),(12,15),(12,16),(12,17),(12,20),(12,23),(12,24),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(13,24),(14,15),(14,17),(14,18),(14,20),(14,21),(14,24),(15,16),(15,19),(15,22),(15,23),(15,24),(16,18),(16,20),(16,21),(16,24),(17,18),(17,19),(17,21),(17,22),(17,24),(18,19),(18,22),(18,23),(18,24),(19,20),(19,21),(19,24),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,24),(23,24)],25)
=> ? ∊ {16,27,54,54,78} - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,15),(1,2),(1,10),(1,12),(1,14),(1,15),(2,9),(2,11),(2,13),(2,15),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(8,10),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,14),(11,15),(12,13),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {29,78,140,140} - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {29,78,140,140} - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? ∊ {29,78,140,140} - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,20),(1,20),(2,5),(2,20),(3,8),(3,9),(3,15),(3,18),(3,19),(3,20),(4,7),(4,16),(4,17),(4,18),(4,19),(4,20),(5,8),(5,9),(5,15),(5,18),(5,19),(5,20),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(6,20),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(7,20),(8,9),(8,11),(8,13),(8,14),(8,17),(8,20),(9,10),(9,12),(9,14),(9,16),(9,20),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(11,20),(12,13),(12,15),(12,17),(12,18),(12,19),(12,20),(13,15),(13,16),(13,18),(13,19),(13,20),(14,15),(14,18),(14,19),(14,20),(15,16),(15,17),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,20),(19,20)],21)
=> ? ∊ {29,78,140,140} - 2
Description
The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph.
Let $n(G)$ be the number of vertices of a graph $G$, $m(G)$ be its number of edges and let $\alpha(G)$ be its independence number, [[St000093]]. Turán's theorem is that $m(G) \geq m(T^c(n(G), \alpha(G)))$ where $T^c(n, r)$ is the complement of the Turán graph.
This statistic records the difference.
Matching statistic: St000643
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000643: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
St000643: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> ? = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 3 = 4 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 4 = 5 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 6 = 7 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 8 = 9 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? ∊ {16,16} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? ∊ {16,16} - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? ∊ {16,27,54,54,78} - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? ∊ {16,27,54,54,78} - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? ∊ {16,27,54,54,78} - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? ∊ {16,27,54,54,78} - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? ∊ {16,27,54,54,78} - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? ∊ {29,78,140,140} - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? ∊ {29,78,140,140} - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? ∊ {29,78,140,140} - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? ∊ {29,78,140,140} - 1
Description
The size of the largest orbit of antichains under Panyushev complementation.
Matching statistic: St000870
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 4
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 7
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? ∊ {9,16,16}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {9,16,16}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {9,16,16}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? ∊ {16,27,54,54,78}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {16,27,54,54,78}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {16,27,54,54,78}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? ∊ {16,27,54,54,78}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? ∊ {16,27,54,54,78}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? ∊ {29,78,140,140}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {29,78,140,140}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {29,78,140,140}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {29,78,140,140}
Description
The product of the hook lengths of the diagonal cells in an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
Matching statistic: St000939
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> [2]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 3 = 4 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 4 = 5 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 6 = 7 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? ∊ {9,16,16} - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {9,16,16} - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {9,16,16} - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? ∊ {16,27,54,54,78} - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {16,27,54,54,78} - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {16,27,54,54,78} - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? ∊ {16,27,54,54,78} - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? ∊ {16,27,54,54,78} - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? ∊ {29,78,140,140} - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {29,78,140,140} - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {29,78,140,140} - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {29,78,140,140} - 1
Description
The number of characters of the symmetric group whose value on the partition is positive.
Matching statistic: St000506
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> [2]
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2 = 4 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 3 = 5 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 5 = 7 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? ∊ {9,16,16} - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {9,16,16} - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? ∊ {9,16,16} - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? ∊ {16,27,54,54,78} - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {16,27,54,54,78} - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {16,27,54,54,78} - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? ∊ {16,27,54,54,78} - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? ∊ {16,27,54,54,78} - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? ∊ {29,78,140,140} - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {29,78,140,140} - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? ∊ {29,78,140,140} - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? ∊ {29,78,140,140} - 2
Description
The number of standard desarrangement tableaux of shape equal to the given partition.
A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
* [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition
* [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St000459
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 4
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 7
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? ∊ {9,16,16}
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {9,16,16}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {9,16,16}
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> [6,6,5,5,5,3,3,3,3,3]
=> ? ∊ {16,27,54,54,78}
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> [10,10,9,9,8,8,8,8]
=> ? ∊ {16,27,54,54,78}
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> [10,10,9,9,8,8,8,8]
=> ? ∊ {16,27,54,54,78}
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> [10,10,9,7,7,7]
=> ? ∊ {16,27,54,54,78}
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> [11,11,10,9,8,8,8,8,8,8,8,8]
=> ? ∊ {16,27,54,54,78}
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> [14,14,13,13,12,12,9,9,9,9,9,9]
=> ? ∊ {29,78,140,140}
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> [26,26,25,25,25,25,25,25,25,25]
=> ? ∊ {29,78,140,140}
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> [26,26,25,25,25,25,25,25,25,25]
=> ? ∊ {29,78,140,140}
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> [17,17,16,16,15,15,15,15,7,7,7,7,7,7,7,7]
=> ? ∊ {29,78,140,140}
Description
The hook length of the base cell of a partition.
This is also known as the perimeter of a partition. In particular, the perimeter of the empty partition is zero.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001725The harmonious chromatic number of a graph. St000479The Ramsey number of a graph. St001917The order of toric promotion on the set of labellings of a graph. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000301The number of facets of the stable set polytope of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St001117The game chromatic index of a graph. St001345The Hamming dimension of a graph. St001391The disjunction number of a graph. St001645The pebbling number of a connected graph. St001869The maximum cut size of a graph. St000095The number of triangles of a graph. St000309The number of vertices with even degree. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001706The number of closed sets in a graph. St001742The difference of the maximal and the minimal degree in a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!