searching the database
Your data matches 39 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000385
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
St000385: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> 1
[[.,.],.]
=> 1
[.,[.,[.,.]]]
=> 2
[.,[[.,.],.]]
=> 2
[[.,.],[.,.]]
=> 0
[[.,[.,.]],.]
=> 2
[[[.,.],.],.]
=> 2
[.,[.,[.,[.,.]]]]
=> 3
[.,[.,[[.,.],.]]]
=> 3
[.,[[.,.],[.,.]]]
=> 1
[.,[[.,[.,.]],.]]
=> 3
[.,[[[.,.],.],.]]
=> 3
[[.,.],[.,[.,.]]]
=> 1
[[.,.],[[.,.],.]]
=> 1
[[.,[.,.]],[.,.]]
=> 1
[[[.,.],.],[.,.]]
=> 1
[[.,[.,[.,.]]],.]
=> 3
[[.,[[.,.],.]],.]
=> 3
[[[.,.],[.,.]],.]
=> 1
[[[.,[.,.]],.],.]
=> 3
[[[[.,.],.],.],.]
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> 4
[.,[.,[.,[[.,.],.]]]]
=> 4
[.,[.,[[.,.],[.,.]]]]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> 4
[.,[.,[[[.,.],.],.]]]
=> 4
[.,[[.,.],[.,[.,.]]]]
=> 2
[.,[[.,.],[[.,.],.]]]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> 2
[.,[[[.,.],.],[.,.]]]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> 4
[.,[[.,[[.,.],.]],.]]
=> 4
[.,[[[.,.],[.,.]],.]]
=> 2
[.,[[[.,[.,.]],.],.]]
=> 4
[.,[[[[.,.],.],.],.]]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> 2
[[.,.],[.,[[.,.],.]]]
=> 2
[[.,.],[[.,.],[.,.]]]
=> 0
[[.,.],[[.,[.,.]],.]]
=> 2
[[.,.],[[[.,.],.],.]]
=> 2
[[.,[.,.]],[.,[.,.]]]
=> 2
[[.,[.,.]],[[.,.],.]]
=> 2
[[[.,.],.],[.,[.,.]]]
=> 2
[[[.,.],.],[[.,.],.]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> 2
[[.,[[.,.],.]],[.,.]]
=> 2
[[[.,.],[.,.]],[.,.]]
=> 0
[[[.,[.,.]],.],[.,.]]
=> 2
[[[[.,.],.],.],[.,.]]
=> 2
[[.,[.,[.,[.,.]]]],.]
=> 4
Description
The number of vertices with out-degree 1 in a binary tree.
See the references for several connections of this statistic.
In particular, the number $T(n,k)$ of binary trees with $n$ vertices and $k$ out-degree $1$ vertices is given by $T(n,k) = 0$ for $n-k$ odd and
$$T(n,k)=\frac{2^k}{n+1}\binom{n+1}{k}\binom{n+1-k}{(n-k)/2}$$
for $n-k$ is even.
Matching statistic: St001631
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
St001631: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001631: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
Description
The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset.
Matching statistic: St001032
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001032: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001032: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 2
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 4
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 4
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 4
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 4
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 4
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
Description
The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path.
In other words, this is the number of valleys and peaks whose first step is in odd position, the initial position equal to 1.
The generating function is given in [1].
Matching statistic: St000776
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
Description
The maximal multiplicity of an eigenvalue in a graph.
Matching statistic: St000986
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
Description
The multiplicity of the eigenvalue zero of the adjacency matrix of the graph.
Matching statistic: St000696
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St000696: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00223: Permutations —runsort⟶ Permutations
St000696: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [2,1] => [1,2] => 3 = 1 + 2
[[.,.],.]
=> [1,2] => [1,2] => 3 = 1 + 2
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 4 = 2 + 2
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => 4 = 2 + 2
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => 4 = 2 + 2
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => 2 = 0 + 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 4 = 2 + 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 5 = 3 + 2
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => 5 = 3 + 2
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => 5 = 3 + 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => 3 = 1 + 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => 5 = 3 + 2
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => 5 = 3 + 2
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => 5 = 3 + 2
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => 3 = 1 + 2
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => 5 = 3 + 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => 3 = 1 + 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => 3 = 1 + 2
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => 3 = 1 + 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => 3 = 1 + 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 5 = 3 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 6 = 4 + 2
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => 6 = 4 + 2
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => 6 = 4 + 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => 4 = 2 + 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => 4 = 2 + 2
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => 4 = 2 + 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => 4 = 2 + 2
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => 4 = 2 + 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => 4 = 2 + 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => 6 = 4 + 2
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 6 = 4 + 2
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => 6 = 4 + 2
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 6 = 4 + 2
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 4 = 2 + 2
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => 6 = 4 + 2
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 4 = 2 + 2
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => 4 = 2 + 2
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 6 = 4 + 2
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 6 = 4 + 2
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 4 = 2 + 2
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => 4 = 2 + 2
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 4 = 2 + 2
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 4 = 2 + 2
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 6 = 4 + 2
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,5,2,3,4] => 4 = 2 + 2
Description
The number of cycles in the breakpoint graph of a permutation.
The breakpoint graph of a permutation $\pi_1,\dots,\pi_n$ is the directed, bicoloured graph with vertices $0,\dots,n$, a grey edge from $i$ to $i+1$ and a black edge from $\pi_i$ to $\pi_{i-1}$ for $0\leq i\leq n$, all indices taken modulo $n+1$.
This graph decomposes into alternating cycles, which this statistic counts.
The distribution of this statistic on permutations of $n-1$ is, according to [cor.1, 5] and [eq.6, 6], given by
$$
\frac{1}{n(n+1)}((q+n)_{n+1}-(q)_{n+1}),
$$
where $(x)_n=x(x-1)\dots(x-n+1)$.
Matching statistic: St001641
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00215: Set partitions —Wachs-White⟶ Set partitions
St001641: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00215: Set partitions —Wachs-White⟶ Set partitions
St001641: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 1
[[.,.],.]
=> [1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 2
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 0
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,2},{3}}
=> 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 3
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,3},{2,4}}
=> 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 1
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> 3
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 3
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> 3
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 3
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 3
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 4
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> {{1,3},{2,4,5}}
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> {{1,2,4,5},{3}}
=> {{1,2,4},{3,5}}
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> {{1,4},{2,3,5}}
=> 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> {{1,4},{2},{3,5}}
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1,3},{2,5},{4}}
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> {{1,4,5},{2,3}}
=> {{1,2,5},{3,4}}
=> 2
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> {{1,5},{2,3,4}}
=> 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> {{1,5},{2,4},{3}}
=> 0
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,5},{2,3},{4}}
=> 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> {{1,5},{2},{3,4}}
=> 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 2
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> 4
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,4},{5}}
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,2,4},{3},{5}}
=> 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> 4
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 2
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> 4
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> 4
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> 2
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> 4
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> 4
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> 4
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> 4
Description
The number of ascent tops in the flattened set partition such that all smaller elements appear before.
Let $P$ be a set partition. The flattened set partition is the permutation obtained by sorting the set of blocks of $P$ according to their minimal element and the elements in each block in increasing order.
Given a set partition $P$, this statistic is the binary logarithm of the number of set partitions that flatten to the same permutation as $P$.
Matching statistic: St001948
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St001948: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St001948: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [2,1] => [1,2] => [1,2] => 1
[[.,.],.]
=> [1,2] => [1,2] => [1,2] => 1
[.,[.,[.,.]]]
=> [3,2,1] => [1,3,2] => [3,1,2] => 0
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [1,2,3] => 2
[[.,.],[.,.]]
=> [1,3,2] => [1,2,3] => [1,2,3] => 2
[[.,[.,.]],.]
=> [2,1,3] => [1,2,3] => [1,2,3] => 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2,3] => 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,4,2,3] => [1,4,2,3] => 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,3,2,4] => [1,3,2,4] => 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,3,4,2] => [3,1,2,4] => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 3
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 3
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 3
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 3
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 3
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 3
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 3
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 3
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,5,2,4,3] => [5,1,4,2,3] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,4,2,5,3] => [4,1,5,2,3] => 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [1,3,4,2,5] => [1,3,2,4,5] => 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,4,2,3,5] => [1,2,4,3,5] => 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,3,5,2,4] => [3,5,1,2,4] => 2
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,5,2,3,4] => 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [1,2,4,3,5] => [1,4,2,3,5] => 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [1,3,5,2,4] => [3,5,1,2,4] => 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,5,1,2,3] => 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,3,2,4,5] => [1,3,4,2,5] => 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,2,4,5,3] => [4,1,2,3,5] => 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,3,4,5,2] => [3,1,2,4,5] => 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,2,5,3,4] => [1,5,2,3,4] => 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,2,4,3,5] => [1,4,2,3,5] => 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,2,3,5,4] => [5,1,2,3,4] => 2
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,2,4,5,3] => [4,1,2,3,5] => 2
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [1,3,2,4,5] => [1,3,4,2,5] => 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 4
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,4,2,3,5] => [1,2,4,3,5] => 2
Description
The number of augmented double ascents of a permutation.
An augmented double ascent of a permutation $\pi$ is a double ascent of the augmented permutation $\tilde\pi$ obtained from $\pi$ by adding an initial $0$.
A double ascent of $\tilde\pi$ then is a position $i$ such that $\tilde\pi(i) < \tilde\pi(i+1) < \tilde\pi(i+2)$.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001879
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 60%
St001879: Posets ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 60%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1}
[[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {1,1,1,1,1,1}
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1}
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {1,1,1,1,1,1}
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
The following 29 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000718The largest Laplacian eigenvalue of a graph if it is integral. St000031The number of cycles in the cycle decomposition of a permutation. St001875The number of simple modules with projective dimension at most 1. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000363The number of minimal vertex covers of a graph. St000488The number of cycles of a permutation of length at most 2. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001323The independence gap of a graph. St001689The number of celebrities in a graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001461The number of topologically connected components of the chord diagram of a permutation. St001288The number of primes obtained by multiplying preimage and image of a permutation and adding one. St000636The hull number of a graph. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001654The monophonic hull number of a graph. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000893The number of distinct diagonal sums of an alternating sign matrix. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!