searching the database
Your data matches 43 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000010
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> 2 = 0 + 2
([(1,3),(2,3)],4)
=> [1,1]
=> 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 3 = 1 + 2
([(0,3),(1,2)],4)
=> [1,1]
=> 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 3 = 1 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2 = 0 + 2
([(2,4),(3,4)],5)
=> [1,1]
=> 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 3 = 1 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 4 = 2 + 2
([(1,4),(2,3)],5)
=> [1,1]
=> 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 3 = 1 + 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 3 = 1 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 4 = 2 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 1 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 4 = 2 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 2 = 0 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 2 = 0 + 2
([(3,5),(4,5)],6)
=> [1,1]
=> 2 = 0 + 2
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 3 = 1 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 4 = 2 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> 5 = 3 + 2
([(2,5),(3,4)],6)
=> [1,1]
=> 2 = 0 + 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> 3 = 1 + 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 3 = 1 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 4 = 2 + 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 4 = 2 + 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 5 = 3 + 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> 4 = 2 + 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 5 = 3 + 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 3 = 1 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 5 = 3 + 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 3 = 1 + 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> 2 = 0 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> 2 = 0 + 2
Description
The length of the partition.
Matching statistic: St000519
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000519: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00317: Integer partitions —odd parts⟶ Binary words
St000519: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> 11 => 1 = 0 + 1
([(1,3),(2,3)],4)
=> [1,1]
=> 11 => 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(0,3),(1,2)],4)
=> [1,1]
=> 11 => 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 11 => 1 = 0 + 1
([(2,4),(3,4)],5)
=> [1,1]
=> 11 => 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 1111 => 3 = 2 + 1
([(1,4),(2,3)],5)
=> [1,1]
=> 11 => 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 1111 => 3 = 2 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 11 => 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 111 => 2 = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 01 => 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 111 => 2 = 1 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 11 => 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 1111 => 3 = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 11 => 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 111 => 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11 => 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 11 => 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 01 => 1 = 0 + 1
([(3,5),(4,5)],6)
=> [1,1]
=> 11 => 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 1111 => 3 = 2 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> 11111 => 4 = 3 + 1
([(2,5),(3,4)],6)
=> [1,1]
=> 11 => 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 111 => 2 = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 1111 => 3 = 2 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 1111 => 3 = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> 11 => 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 11111 => 4 = 3 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 111 => 2 = 1 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1111 => 3 = 2 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> 1111 => 3 = 2 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> 01 => 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 11111 => 4 = 3 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 111 => 2 = 1 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 11111 => 4 = 3 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 011 => 2 = 1 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 11 => 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1111 => 3 = 2 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 111 => 2 = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 011 => 2 = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> 01 => 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 111 => 2 = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> 11 => 1 = 0 + 1
Description
The largest length of a factor maximising the subword complexity.
Let $p_w(n)$ be the number of distinct factors of length $n$. Then the statistic is the largest $n$ such that $p_w(n)$ is maximal:
$$
H_w = \max\{n: p_w(n)\text{ is maximal}\}
$$
A related statistic is the number of distinct factors of arbitrary length, also known as subword complexity, [[St000294]].
Matching statistic: St000147
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(1,3),(2,3)],4)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(2,4),(3,4)],5)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> 4 = 2 + 2
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> 4 = 2 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 1 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [4]
=> 4 = 2 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [2,1,1,1,1,1]
=> 2 = 0 + 2
([(3,5),(4,5)],6)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> 4 = 2 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> 5 = 3 + 2
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> 3 = 1 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> 4 = 2 + 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> 4 = 2 + 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> 5 = 3 + 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [4]
=> 4 = 2 + 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [2,1,1,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> 5 = 3 + 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> 3 = 1 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> 5 = 3 + 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 3 = 1 + 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [2,1,1,1,1,1]
=> 2 = 0 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [2,1,1,1,1,1,1]
=> 2 = 0 + 2
Description
The largest part of an integer partition.
Matching statistic: St000319
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> [1]
=> 0
Description
The spin of an integer partition.
The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$
The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross.
This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> [1]
=> 0
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St001918
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001918: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001918: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> [1]
=> 0
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition.
Let $\lambda$ be an integer partition of $n$ and let $N$ be the least common multiple of the parts of $\lambda$. Fix an arbitrary permutation $\pi$ of cycle type $\lambda$. Then $\pi$ induces a cyclic action of order $N$ on $\{1,\dots,n\}$.
The corresponding character can be identified with the cyclic sieving polynomial $C_\lambda(q)$ of this action, modulo $q^N-1$. Explicitly, it is
$$
\sum_{p\in\lambda} [p]_{q^{N/p}},
$$
where $[p]_q = 1+\dots+q^{p-1}$ is the $q$-integer.
This statistic records the degree of $C_\lambda(q)$. Equivalently, it equals
$$
\left(1 - \frac{1}{\lambda_1}\right) N,
$$
where $\lambda_1$ is the largest part of $\lambda$.
The statistic is undefined for the empty partition.
Matching statistic: St000378
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(1,3),(2,3)],4)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(2,4),(3,4)],5)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [3,1]
=> 4 = 2 + 2
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [3,1]
=> 4 = 2 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 3 = 1 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [3,1]
=> 4 = 2 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [6]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [2,1,1,1,1,1]
=> 2 = 0 + 2
([(3,5),(4,5)],6)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [3,1]
=> 4 = 2 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [3,2]
=> 5 = 3 + 2
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> 2 = 0 + 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [2,1]
=> 3 = 1 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [3,1]
=> 4 = 2 + 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [3,1]
=> 4 = 2 + 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [3,2]
=> 5 = 3 + 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [4,1]
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [3,3]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [3,1]
=> 4 = 2 + 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [2,1,1,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [3,2]
=> 5 = 3 + 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [4,1]
=> 3 = 1 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [3,2]
=> 5 = 3 + 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 3 = 1 + 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 2 = 0 + 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [3,3]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [2,1,1,1,1,1]
=> 2 = 0 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [2,1,1,1,1,1,1]
=> 2 = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,4),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,5),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,3]
=> [2,2,2,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 2
Description
The diagonal inversion number of an integer partition.
The dinv of a partition is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}$.
See also exercise 3.19 of [2].
This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St000288
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> 110 => 2 = 0 + 2
([(1,3),(2,3)],4)
=> [1,1]
=> 110 => 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(0,3),(1,2)],4)
=> [1,1]
=> 110 => 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 2 = 0 + 2
([(2,4),(3,4)],5)
=> [1,1]
=> 110 => 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 11110 => 4 = 2 + 2
([(1,4),(2,3)],5)
=> [1,1]
=> 110 => 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 11110 => 4 = 2 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => 2 = 0 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 3 = 1 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 11110 => 4 = 2 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => 2 = 0 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => 2 = 0 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 10000010 => 2 = 0 + 2
([(3,5),(4,5)],6)
=> [1,1]
=> 110 => 2 = 0 + 2
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 11110 => 4 = 2 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => 5 = 3 + 2
([(2,5),(3,4)],6)
=> [1,1]
=> 110 => 2 = 0 + 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 1110 => 3 = 1 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 11110 => 4 = 2 + 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 11110 => 4 = 2 + 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> 10010 => 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => 5 = 3 + 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 100110 => 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => 4 = 2 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> 11110 => 4 = 2 + 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> 100010 => 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => 5 = 3 + 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 100110 => 3 = 1 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => 5 = 3 + 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 3 = 1 + 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1000010 => 2 = 0 + 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => 4 = 2 + 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 10000110 => 3 = 1 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 1000110 => 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> 10000010 => 2 = 0 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 10000110 => 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> 100000010 => 2 = 0 + 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> 100000000110 => ? = 1 + 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> 100000000110 => ? = 1 + 2
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,5),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> 10000000000010 => ? = 0 + 2
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,3]
=> 1000001000 => ? = 0 + 2
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> 100000000110 => ? = 1 + 2
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [11,1]
=> 1000000000010 => ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> 10000000000010 => ? = 0 + 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [8,3]
=> 1000001000 => ? = 0 + 2
([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> 100000000010 => ? = 0 + 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,3]
=> 1000001000 => ? = 0 + 2
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> 100000000110 => ? = 1 + 2
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000734
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2 = 0 + 2
([(1,3),(2,3)],4)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 0 + 2
([(2,4),(3,4)],5)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4 = 2 + 2
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4 = 2 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 1 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4 = 2 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 0 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 2 = 0 + 2
([(3,5),(4,5)],6)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2 = 0 + 2
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4 = 2 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 5 = 3 + 2
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> [[1,2]]
=> 2 = 0 + 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 3 = 1 + 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4 = 2 + 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4 = 2 + 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 0 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 5 = 3 + 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 4 = 2 + 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 5 = 3 + 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 1 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 5 = 3 + 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3 = 1 + 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 2 = 0 + 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 4 = 2 + 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 3 = 1 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 2 = 0 + 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 3 = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> 2 = 0 + 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1 + 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1 + 2
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,5),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 0 + 2
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1 + 2
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]]
=> ? = 0 + 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 0 + 2
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1 + 2
Description
The last entry in the first row of a standard tableau.
Matching statistic: St000157
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 82% ●values known / values provided: 82%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 2 + 1
([(1,4),(2,3)],5)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 2 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 1 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 2 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4 = 3 + 1
([(2,5),(3,4)],6)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 2 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4 = 3 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 1 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3 = 2 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 2 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4 = 3 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 1 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4 = 3 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 2 = 1 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 3 = 2 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 2 = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 2 = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 2 = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> 1 = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 1 + 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 1 + 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,5),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13]]
=> ? = 0 + 1
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 0 + 1
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 1 + 1
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 0 + 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13]]
=> ? = 0 + 1
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 0 + 1
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 1 + 1
Description
The number of descents of a standard tableau.
Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
The following 33 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000733The row containing the largest entry of a standard tableau. St000507The number of ascents of a standard tableau. St000668The least common multiple of the parts of the partition. St000676The number of odd rises of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001462The number of factors of a standard tableaux under concatenation. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St000053The number of valleys of the Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000331The number of upper interactions of a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St000015The number of peaks of a Dyck path. St001530The depth of a Dyck path. St001622The number of join-irreducible elements of a lattice. St001613The binary logarithm of the size of the center of a lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!