Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000385: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> 1
[[.,.],.]
=> 1
[.,[.,[.,.]]]
=> 2
[.,[[.,.],.]]
=> 2
[[.,.],[.,.]]
=> 0
[[.,[.,.]],.]
=> 2
[[[.,.],.],.]
=> 2
[.,[.,[.,[.,.]]]]
=> 3
[.,[.,[[.,.],.]]]
=> 3
[.,[[.,.],[.,.]]]
=> 1
[.,[[.,[.,.]],.]]
=> 3
[.,[[[.,.],.],.]]
=> 3
[[.,.],[.,[.,.]]]
=> 1
[[.,.],[[.,.],.]]
=> 1
[[.,[.,.]],[.,.]]
=> 1
[[[.,.],.],[.,.]]
=> 1
[[.,[.,[.,.]]],.]
=> 3
[[.,[[.,.],.]],.]
=> 3
[[[.,.],[.,.]],.]
=> 1
[[[.,[.,.]],.],.]
=> 3
[[[[.,.],.],.],.]
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> 4
[.,[.,[.,[[.,.],.]]]]
=> 4
[.,[.,[[.,.],[.,.]]]]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> 4
[.,[.,[[[.,.],.],.]]]
=> 4
[.,[[.,.],[.,[.,.]]]]
=> 2
[.,[[.,.],[[.,.],.]]]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> 2
[.,[[[.,.],.],[.,.]]]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> 4
[.,[[.,[[.,.],.]],.]]
=> 4
[.,[[[.,.],[.,.]],.]]
=> 2
[.,[[[.,[.,.]],.],.]]
=> 4
[.,[[[[.,.],.],.],.]]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> 2
[[.,.],[.,[[.,.],.]]]
=> 2
[[.,.],[[.,.],[.,.]]]
=> 0
[[.,.],[[.,[.,.]],.]]
=> 2
[[.,.],[[[.,.],.],.]]
=> 2
[[.,[.,.]],[.,[.,.]]]
=> 2
[[.,[.,.]],[[.,.],.]]
=> 2
[[[.,.],.],[.,[.,.]]]
=> 2
[[[.,.],.],[[.,.],.]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> 2
[[.,[[.,.],.]],[.,.]]
=> 2
[[[.,.],[.,.]],[.,.]]
=> 0
[[[.,[.,.]],.],[.,.]]
=> 2
[[[[.,.],.],.],[.,.]]
=> 2
[[.,[.,[.,[.,.]]]],.]
=> 4
Description
The number of vertices with out-degree 1 in a binary tree. See the references for several connections of this statistic. In particular, the number $T(n,k)$ of binary trees with $n$ vertices and $k$ out-degree $1$ vertices is given by $T(n,k) = 0$ for $n-k$ odd and $$T(n,k)=\frac{2^k}{n+1}\binom{n+1}{k}\binom{n+1-k}{(n-k)/2}$$ for $n-k$ is even.
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000696: Permutations ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 100%
Values
[.,[.,.]]
=> [1,0,1,0]
=> [1,2] => [1,2] => 3 = 1 + 2
[[.,.],.]
=> [1,1,0,0]
=> [2,1] => [1,2] => 3 = 1 + 2
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 4 = 2 + 2
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => 4 = 2 + 2
[[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => 2 = 0 + 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => 4 = 2 + 2
[[[.,.],.],.]
=> [1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 4 = 2 + 2
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 5 = 3 + 2
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => 5 = 3 + 2
[.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => 3 = 1 + 2
[.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => 5 = 3 + 2
[.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => 5 = 3 + 2
[[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => 3 = 1 + 2
[[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => 3 = 1 + 2
[[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => 3 = 1 + 2
[[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => 3 = 1 + 2
[[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => 5 = 3 + 2
[[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => 5 = 3 + 2
[[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 3 = 1 + 2
[[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => 5 = 3 + 2
[[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 5 = 3 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 6 = 4 + 2
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => 6 = 4 + 2
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => 4 = 2 + 2
[.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => 6 = 4 + 2
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,4,3,5] => 4 = 2 + 2
[.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => 4 = 2 + 2
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => 4 = 2 + 2
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => 4 = 2 + 2
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => 4 = 2 + 2
[.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => 6 = 4 + 2
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => 6 = 4 + 2
[[.,.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,3,2,4,5] => 4 = 2 + 2
[[.,.],[.,[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [1,3,2,4,5] => 4 = 2 + 2
[[.,.],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,3,5,2,4] => 2 = 0 + 2
[[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [1,3,4,2,5] => 4 = 2 + 2
[[.,.],[[[.,.],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,3,4,5,2] => 4 = 2 + 2
[[.,[.,.]],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => [1,4,2,3,5] => 4 = 2 + 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,4,5,2,3] => 4 = 2 + 2
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [1,4,2,3,5] => 4 = 2 + 2
[[[.,.],.],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,4,5,2,3] => 4 = 2 + 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [1,5,2,3,4] => 4 = 2 + 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [1,5,2,3,4] => 4 = 2 + 2
[[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,5,2,4,3] => 2 = 0 + 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [1,5,2,3,4] => 4 = 2 + 2
[[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [1,5,2,3,4] => 4 = 2 + 2
[[.,[.,[.,[.,.]]]],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => 6 = 4 + 2
[[.,[.,[.,.]]],[.,[.,[.,.]]]]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [5,2,3,4,1,6,7] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[.,[.,[.,.]]],[.,[[.,.],.]]]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [5,2,3,4,1,7,6] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[.,[.,[.,.]]],[[.,[.,.]],.]]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [5,2,3,4,6,1,7] => [1,5,6,2,3,4,7] => ? = 4 + 2
[[.,[[.,.],.]],[.,[.,[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [5,2,4,3,1,6,7] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[.,[[.,.],.]],[.,[[.,.],.]]]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [5,2,4,3,1,7,6] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[.,[[.,.],.]],[[.,[.,.]],.]]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [5,2,4,3,6,1,7] => [1,5,6,2,3,4,7] => ? = 4 + 2
[[[.,.],[.,.]],[.,[.,[.,.]]]]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [7,6,3,4,5,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[[[.,.],[.,.]],[.,[[.,.],.]]]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [7,6,3,5,4,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[[[.,.],[.,.]],[[.,.],[.,.]]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => [1,7,2,6,3,5,4] => ? = 0 + 2
[[[.,.],[.,.]],[[.,[.,.]],.]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [7,6,4,3,5,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[[[.,.],[.,.]],[[[.,.],.],.]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,6,4,5,3,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[[[.,[.,.]],.],[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [5,3,2,4,1,6,7] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[[.,[.,.]],.],[.,[[.,.],.]]]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [5,3,2,4,1,7,6] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[[.,[.,.]],.],[[.,[.,.]],.]]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [5,3,2,4,6,1,7] => [1,5,6,2,3,4,7] => ? = 4 + 2
[[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [5,3,4,2,1,6,7] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[[[.,.],.],.],[.,[[.,.],.]]]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [5,3,4,2,1,7,6] => [1,5,2,3,4,6,7] => ? = 4 + 2
[[[[.,.],.],.],[[.,[.,.]],.]]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [5,3,4,2,6,1,7] => [1,5,6,2,3,4,7] => ? = 4 + 2
[[.,[.,[.,[.,.]]]],[.,[.,.]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [6,2,3,4,5,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[.,[.,[[.,.],.]]],[.,[.,.]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,5,4,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[.,[[.,.],[.,.]]],[.,[.,.]]]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [7,2,6,4,5,3,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[[.,[[.,.],[.,.]]],[[.,.],.]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [7,2,6,5,4,3,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[[.,[[.,[.,.]],.]],[.,[.,.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [6,2,4,3,5,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[.,[[[.,.],.],.]],[.,[.,.]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [6,2,4,5,3,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[[.,.],[.,[.,.]]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => [1,6,2,5,3,4,7] => ? = 2 + 2
[[[.,.],[.,[.,.]]],[[.,.],.]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => [1,6,2,5,3,4,7] => ? = 2 + 2
[[[.,.],[[.,.],.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [6,5,3,4,2,7,1] => [1,6,7,2,5,3,4] => ? = 2 + 2
[[[.,.],[[.,.],.]],[[.,.],.]]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => [1,6,7,2,5,3,4] => ? = 2 + 2
[[[.,[.,.]],[.,.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [7,5,3,4,2,6,1] => [1,7,2,5,3,4,6] => ? = 2 + 2
[[[.,[.,.]],[.,.]],[[.,.],.]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => [1,7,2,5,3,4,6] => ? = 2 + 2
[[[[.,.],.],[.,.]],[.,[.,.]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [7,5,3,4,6,2,1] => [1,7,2,5,6,3,4] => ? = 2 + 2
[[[[.,.],.],[.,.]],[[.,.],.]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => [1,7,2,5,6,3,4] => ? = 2 + 2
[[[.,[.,[.,.]]],.],[.,[.,.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[[.,[[.,.],.]],.],[.,[.,.]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [6,3,2,5,4,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[[[.,.],[.,.]],.],[.,[.,.]]]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [7,3,6,4,5,2,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[[[[.,.],[.,.]],.],[[.,.],.]]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [7,3,6,5,4,2,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[[[[.,[.,.]],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [6,3,4,2,5,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [6,3,4,5,2,1,7] => [1,6,2,3,4,5,7] => ? = 4 + 2
[[.,[.,[[.,.],[.,.]]]],[.,.]]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [7,2,3,6,5,4,1] => [1,7,2,3,4,6,5] => ? = 2 + 2
[[.,[[.,.],[.,[.,.]]]],[.,.]]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [6,2,5,4,3,1,7] => [1,6,2,3,5,4,7] => ? = 2 + 2
[[.,[[.,.],[[.,.],.]]],[.,.]]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [6,2,5,4,3,7,1] => [1,6,7,2,3,5,4] => ? = 2 + 2
[[.,[[.,[.,.]],[.,.]]],[.,.]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [7,2,5,4,3,6,1] => [1,7,2,3,5,4,6] => ? = 2 + 2
[[.,[[[.,.],.],[.,.]]],[.,.]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [7,2,5,4,6,3,1] => [1,7,2,3,5,6,4] => ? = 2 + 2
[[.,[[[.,.],[.,.]],.]],[.,.]]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [7,2,4,6,5,3,1] => [1,7,2,3,4,6,5] => ? = 2 + 2
[[[.,.],[.,[.,[.,.]]]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => [1,5,2,4,3,6,7] => ? = 2 + 2
[[[.,.],[.,[[.,.],.]]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => [1,5,2,4,3,6,7] => ? = 2 + 2
[[[.,.],[[.,.],[.,.]]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => [1,5,7,2,4,3,6] => ? = 0 + 2
[[[.,.],[[.,[.,.]],.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,4,3,2,6,1,7] => [1,5,6,2,4,3,7] => ? = 2 + 2
[[[.,.],[[[.,.],.],.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => [1,5,6,7,2,4,3] => ? = 2 + 2
[[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [6,4,3,2,5,1,7] => [1,6,2,4,3,5,7] => ? = 2 + 2
[[[.,[.,.]],[[.,.],.]],[.,.]]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,3,2,5,7,1] => [1,6,7,2,4,3,5] => ? = 2 + 2
Description
The number of cycles in the breakpoint graph of a permutation. The breakpoint graph of a permutation $\pi_1,\dots,\pi_n$ is the directed, bicoloured graph with vertices $0,\dots,n$, a grey edge from $i$ to $i+1$ and a black edge from $\pi_i$ to $\pi_{i-1}$ for $0\leq i\leq n$, all indices taken modulo $n+1$. This graph decomposes into alternating cycles, which this statistic counts. The distribution of this statistic on permutations of $n-1$ is, according to [cor.1, 5] and [eq.6, 6], given by $$ \frac{1}{n(n+1)}((q+n)_{n+1}-(q)_{n+1}), $$ where $(x)_n=x(x-1)\dots(x-n+1)$.
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
St000986: Graphs ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 88%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 3 + 1
[.,[.,[.,[[.,.],[[.,[.,.]],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,.],[[[.,.],.],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,[.,.]],[[.,.],.]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[.,.],.],[[.,.],.]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,[[.,.],.]],[.,.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[.,.],[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ?
=> ? = 3 + 1
[.,[.,[.,[[[.,[.,.]],.],[.,.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[[.,.],.],.],[.,.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[.,[[.,.],[.,.]]],.]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[.,[[[.,.],.],.]],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[.,[.,.]],[.,.]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[[.,.],.],[.,.]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[.,[.,[.,.]]],.],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[[.,[[.,.],.]],.],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[[[.,.],[.,.]],.],.]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[.,[[[[.,[.,.]],.],.],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 7 + 1
[.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[[.,.],[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(6,4),(7,3)],8)
=> ?
=> ? = 3 + 1
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[[.,.],[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 5 + 1
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 3 + 1
[.,[.,[[.,.],[[.,.],[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 3 + 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ?
=> ? = 3 + 1
Description
The multiplicity of the eigenvalue zero of the adjacency matrix of the graph.
Mp00013: Binary trees to posetPosets
St001631: Posets ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 88%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 4
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 4
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? = 2
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? = 2
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 4
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 4
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ? = 2
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ? = 2
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,.],[[[[.,.],.],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ? = 2
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[.,[[[.,.],.],[.,[.,[.,.]]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[.,[[[.,.],.],[.,[[.,.],.]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[.,[[[.,.],.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ? = 2
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[.,[[[.,.],.],[[[.,.],.],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
Description
The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset.
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001032: Dyck paths ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 75%
Values
[.,[.,.]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[[.,.],.]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[[.,.],.],.]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 4
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 4
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 4
[.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 4
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 4
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0
[[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 2
[[.,.],[[[.,.],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 2
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[[[.,[.,.]],.],[.,.]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[[.,[.,[.,[.,.]]]],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 4
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 6
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 6
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 4
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 4
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 4
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 6
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 6
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 4
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 6
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 6
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 4
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 4
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 2
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 4
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 4
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 4
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 4
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 4
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 4
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 4
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 4
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 4
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 4
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 6
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 6
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 4
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 6
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 6
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 4
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 4
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 4
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 6
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 6
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 4
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 6
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 6
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 4
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? = 4
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 2
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 4
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 4
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ? = 2
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> ? = 2
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> ? = 2
Description
The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. In other words, this is the number of valleys and peaks whose first step is in odd position, the initial position equal to 1. The generating function is given in [1].
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 62%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ? = 1
[[.,.],.]
=> ([(0,1)],2)
=> ? = 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 3
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 3
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ? = 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Mp00013: Binary trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 62%
Values
[.,[.,.]]
=> ([(0,1)],2)
=> ? = 1 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 3 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 3 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 3 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3 + 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3 + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ? = 1 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3 + 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 3 + 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3 + 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3 + 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3 + 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 3 + 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.