searching the database
Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000422
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0
[[1,2]]
=> [2] => [2] => ([],2)
=> 0
[[1],[2]]
=> [2] => [2] => ([],2)
=> 0
[[1,2,3]]
=> [3] => [3] => ([],3)
=> 0
[[1,3],[2]]
=> [2,1] => [1,2] => ([(1,2)],3)
=> 2
[[1,2],[3]]
=> [3] => [3] => ([],3)
=> 0
[[1],[2],[3]]
=> [3] => [3] => ([],3)
=> 0
[[1,2,3,4]]
=> [4] => [4] => ([],4)
=> 0
[[1,2,4],[3]]
=> [3,1] => [1,3] => ([(2,3)],4)
=> 2
[[1,2,3],[4]]
=> [4] => [4] => ([],4)
=> 0
[[1,2],[3,4]]
=> [3,1] => [1,3] => ([(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [3,1] => [1,3] => ([(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [4] => [4] => ([],4)
=> 0
[[1],[2],[3],[4]]
=> [4] => [4] => ([],4)
=> 0
[[1,2,3,4,5]]
=> [5] => [5] => ([],5)
=> 0
[[1,2,3,5],[4]]
=> [4,1] => [1,4] => ([(3,4)],5)
=> 2
[[1,2,3,4],[5]]
=> [5] => [5] => ([],5)
=> 0
[[1,2,3],[4,5]]
=> [4,1] => [1,4] => ([(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [4,1] => [1,4] => ([(3,4)],5)
=> 2
[[1,2,3],[4],[5]]
=> [5] => [5] => ([],5)
=> 0
[[1,2],[3,5],[4]]
=> [4,1] => [1,4] => ([(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [4,1] => [1,4] => ([(3,4)],5)
=> 2
[[1,2],[3],[4],[5]]
=> [5] => [5] => ([],5)
=> 0
[[1],[2],[3],[4],[5]]
=> [5] => [5] => ([],5)
=> 0
[[1,2,3,4,5,6]]
=> [6] => [6] => ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,2,3,4,6],[5]]
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2
[[1,2,3,4,5],[6]]
=> [6] => [6] => ([],6)
=> 0
[[1,3,4,6],[2,5]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,3,4,5],[2,6]]
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,2,3,4],[5,6]]
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2
[[1,3,4,6],[2],[5]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,2,3,6],[4],[5]]
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2
[[1,3,4,5],[2],[6]]
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,2,3,4],[5],[6]]
=> [6] => [6] => ([],6)
=> 0
[[1,3,4],[2,5,6]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,3,6],[2,4],[5]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,3,4],[2,6],[5]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,2,3],[4,6],[5]]
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,2,6],[3],[4],[5]]
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2
[[1,3,4],[2],[5],[6]]
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,2,3],[4],[5],[6]]
=> [6] => [6] => ([],6)
=> 0
[[1,3],[2,4],[5,6]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,2],[3,6],[4],[5]]
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2
[[1,3],[2,4],[5],[6]]
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,6],[2],[3],[4],[5]]
=> [5,1] => [1,5] => ([(4,5)],6)
=> 2
[[1,3],[2],[4],[5],[6]]
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000514
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000514: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 54%●distinct values known / distinct values provided: 50%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000514: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 54%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1] => [1]
=> []
=> ? = 0 - 2
[[1,2]]
=> [2] => [2]
=> []
=> ? = 0 - 2
[[1],[2]]
=> [2] => [2]
=> []
=> ? = 0 - 2
[[1,2,3]]
=> [3] => [3]
=> []
=> ? = 0 - 2
[[1,3],[2]]
=> [2,1] => [2,1]
=> [1]
=> ? = 2 - 2
[[1,2],[3]]
=> [3] => [3]
=> []
=> ? = 0 - 2
[[1],[2],[3]]
=> [3] => [3]
=> []
=> ? = 0 - 2
[[1,2,3,4]]
=> [4] => [4]
=> []
=> ? = 0 - 2
[[1,2,4],[3]]
=> [3,1] => [3,1]
=> [1]
=> ? = 2 - 2
[[1,2,3],[4]]
=> [4] => [4]
=> []
=> ? = 0 - 2
[[1,2],[3,4]]
=> [3,1] => [3,1]
=> [1]
=> ? = 2 - 2
[[1,4],[2],[3]]
=> [3,1] => [3,1]
=> [1]
=> ? = 2 - 2
[[1,2],[3],[4]]
=> [4] => [4]
=> []
=> ? = 0 - 2
[[1],[2],[3],[4]]
=> [4] => [4]
=> []
=> ? = 0 - 2
[[1,2,3,4,5]]
=> [5] => [5]
=> []
=> ? = 0 - 2
[[1,2,3,5],[4]]
=> [4,1] => [4,1]
=> [1]
=> ? = 2 - 2
[[1,2,3,4],[5]]
=> [5] => [5]
=> []
=> ? = 0 - 2
[[1,2,3],[4,5]]
=> [4,1] => [4,1]
=> [1]
=> ? = 2 - 2
[[1,2,5],[3],[4]]
=> [4,1] => [4,1]
=> [1]
=> ? = 2 - 2
[[1,2,3],[4],[5]]
=> [5] => [5]
=> []
=> ? = 0 - 2
[[1,2],[3,5],[4]]
=> [4,1] => [4,1]
=> [1]
=> ? = 2 - 2
[[1,5],[2],[3],[4]]
=> [4,1] => [4,1]
=> [1]
=> ? = 2 - 2
[[1,2],[3],[4],[5]]
=> [5] => [5]
=> []
=> ? = 0 - 2
[[1],[2],[3],[4],[5]]
=> [5] => [5]
=> []
=> ? = 0 - 2
[[1,2,3,4,5,6]]
=> [6] => [6]
=> []
=> ? = 0 - 2
[[1,3,4,5,6],[2]]
=> [2,4] => [4,2]
=> [2]
=> 2 = 4 - 2
[[1,2,3,4,6],[5]]
=> [5,1] => [5,1]
=> [1]
=> ? = 2 - 2
[[1,2,3,4,5],[6]]
=> [6] => [6]
=> []
=> ? = 0 - 2
[[1,3,4,6],[2,5]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,3,4,5],[2,6]]
=> [2,4] => [4,2]
=> [2]
=> 2 = 4 - 2
[[1,2,3,4],[5,6]]
=> [5,1] => [5,1]
=> [1]
=> ? = 2 - 2
[[1,3,4,6],[2],[5]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,2,3,6],[4],[5]]
=> [5,1] => [5,1]
=> [1]
=> ? = 2 - 2
[[1,3,4,5],[2],[6]]
=> [2,4] => [4,2]
=> [2]
=> 2 = 4 - 2
[[1,2,3,4],[5],[6]]
=> [6] => [6]
=> []
=> ? = 0 - 2
[[1,3,4],[2,5,6]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,3,6],[2,4],[5]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,3,4],[2,6],[5]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,2,3],[4,6],[5]]
=> [5,1] => [5,1]
=> [1]
=> ? = 2 - 2
[[1,3,4],[2,5],[6]]
=> [2,4] => [4,2]
=> [2]
=> 2 = 4 - 2
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,2,6],[3],[4],[5]]
=> [5,1] => [5,1]
=> [1]
=> ? = 2 - 2
[[1,3,4],[2],[5],[6]]
=> [2,4] => [4,2]
=> [2]
=> 2 = 4 - 2
[[1,2,3],[4],[5],[6]]
=> [6] => [6]
=> []
=> ? = 0 - 2
[[1,3],[2,4],[5,6]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => [3,2,1]
=> [2,1]
=> 4 = 6 - 2
[[1,2],[3,6],[4],[5]]
=> [5,1] => [5,1]
=> [1]
=> ? = 2 - 2
[[1,3],[2,4],[5],[6]]
=> [2,4] => [4,2]
=> [2]
=> 2 = 4 - 2
[[1,6],[2],[3],[4],[5]]
=> [5,1] => [5,1]
=> [1]
=> ? = 2 - 2
[[1,3],[2],[4],[5],[6]]
=> [2,4] => [4,2]
=> [2]
=> 2 = 4 - 2
[[1,2],[3],[4],[5],[6]]
=> [6] => [6]
=> []
=> ? = 0 - 2
[[1],[2],[3],[4],[5],[6]]
=> [6] => [6]
=> []
=> ? = 0 - 2
[[1,2,3,4,5,6,7]]
=> [7] => [7]
=> []
=> ? = 0 - 2
[[1,2,4,5,6,7],[3]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,3,4,5,7],[6]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
[[1,2,3,4,5,6],[7]]
=> [7] => [7]
=> []
=> ? = 0 - 2
[[1,2,5,6,7],[3,4]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,4,5,6],[3,7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,3,4,5],[6,7]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
[[1,4,5,6,7],[2],[3]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,3,4,7],[5],[6]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
[[1,2,4,5,6],[3],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,3,4,5],[6],[7]]
=> [7] => [7]
=> []
=> ? = 0 - 2
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,5,6],[3,4,7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,4,5,6],[2,7],[3]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,3,4],[5,7],[6]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
[[1,2,5,6],[3,4],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,4,5],[3,6],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,4,5,7],[2],[3],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,4,7],[3],[5],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,3,7],[4],[5],[6]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
[[1,4,5,6],[2],[3],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,4,5],[3],[6],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,3,4],[5],[6],[7]]
=> [7] => [7]
=> []
=> ? = 0 - 2
[[1,4,5],[2,6,7],[3]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,5],[3,4,7],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,4],[3,5,7],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,5],[3,4,6],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,4,7],[2,5],[3,6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,4,5],[2,6],[3,7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,5],[3,4],[6,7]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,4],[3,5],[6,7]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,4,7],[2,5],[3],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,7],[3,4],[5],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,4,5],[2,7],[3],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,4],[3,7],[5],[6]]
=> [3,3,1] => [3,3,1]
=> [3,1]
=> 4 = 6 - 2
[[1,2,3],[4,7],[5],[6]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
[[1,4,5],[2,6],[3],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,5],[3,4],[6],[7]]
=> [3,4] => [4,3]
=> [3]
=> 2 = 4 - 2
[[1,2,7],[3],[4],[5],[6]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
[[1,2,3],[4],[5],[6],[7]]
=> [7] => [7]
=> []
=> ? = 0 - 2
[[1,2],[3,7],[4],[5],[6]]
=> [6,1] => [6,1]
=> [1]
=> ? = 2 - 2
Description
The number of invariant simple graphs when acting with a permutation of given cycle type.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 29%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 29%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1] => ([],1)
=> 0
[[1,2]]
=> [2] => ([],2)
=> 0
[[1],[2]]
=> [2] => ([],2)
=> 0
[[1,2,3]]
=> [3] => ([],3)
=> 0
[[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
[[1,2],[3]]
=> [3] => ([],3)
=> 0
[[1],[2],[3]]
=> [3] => ([],3)
=> 0
[[1,2,3,4]]
=> [4] => ([],4)
=> 0
[[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
[[1,2,3],[4]]
=> [4] => ([],4)
=> 0
[[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
[[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
[[1,2],[3],[4]]
=> [4] => ([],4)
=> 0
[[1],[2],[3],[4]]
=> [4] => ([],4)
=> 0
[[1,2,3,4,5]]
=> [5] => ([],5)
=> 0
[[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2,3,4],[5]]
=> [5] => ([],5)
=> 0
[[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2],[3],[4],[5]]
=> [5] => ([],5)
=> 0
[[1],[2],[3],[4],[5]]
=> [5] => ([],5)
=> 0
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,2,3,4,5],[6]]
=> [6] => ([],6)
=> 0
[[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3,4,5],[2,6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4,6],[2],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4,5],[2],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3,4],[5],[6]]
=> [6] => ([],6)
=> 0
[[1,3,4],[2,5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3,4],[2,6],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2,3],[4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4],[2,5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2,6],[3],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4],[2],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3],[4],[5],[6]]
=> [6] => ([],6)
=> 0
[[1,3],[2,4],[5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2],[3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3],[2,4],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,6],[2],[3],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3],[2],[4],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2],[3],[4],[5],[6]]
=> [6] => ([],6)
=> 0
[[1],[2],[3],[4],[5],[6]]
=> [6] => ([],6)
=> 0
[[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> 0
[[1,2,4,5,6,7],[3]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,2,3,4,5,6],[7]]
=> [7] => ([],7)
=> 0
[[1,2,5,6,7],[3,4]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,5,6],[3,7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,4,5,6,7],[2],[3]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,2,4,5,6],[3],[7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,3,4,5],[6],[7]]
=> [7] => ([],7)
=> 0
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5,6],[3,4,7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4,5,6],[2,7],[3]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,2,5,6],[3,4],[7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5],[3,6],[7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,4,5,7],[2],[3],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,7],[3],[5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,2,3,4],[5],[6],[7]]
=> [7] => ([],7)
=> 0
[[1,2,3],[4],[5],[6],[7]]
=> [7] => ([],7)
=> 0
[[1,2],[3],[4],[5],[6],[7]]
=> [7] => ([],7)
=> 0
[[1],[2],[3],[4],[5],[6],[7]]
=> [7] => ([],7)
=> 0
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000264
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1] => ([],1)
=> ? = 0 - 3
[[1,2]]
=> [2] => ([],2)
=> ? = 0 - 3
[[1],[2]]
=> [2] => ([],2)
=> ? = 0 - 3
[[1,2,3]]
=> [3] => ([],3)
=> ? = 0 - 3
[[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> ? = 2 - 3
[[1,2],[3]]
=> [3] => ([],3)
=> ? = 0 - 3
[[1],[2],[3]]
=> [3] => ([],3)
=> ? = 0 - 3
[[1,2,3,4]]
=> [4] => ([],4)
=> ? = 0 - 3
[[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 3
[[1,2,3],[4]]
=> [4] => ([],4)
=> ? = 0 - 3
[[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 3
[[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 3
[[1,2],[3],[4]]
=> [4] => ([],4)
=> ? = 0 - 3
[[1],[2],[3],[4]]
=> [4] => ([],4)
=> ? = 0 - 3
[[1,2,3,4,5]]
=> [5] => ([],5)
=> ? = 0 - 3
[[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 - 3
[[1,2,3,4],[5]]
=> [5] => ([],5)
=> ? = 0 - 3
[[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 - 3
[[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 - 3
[[1,2,3],[4],[5]]
=> [5] => ([],5)
=> ? = 0 - 3
[[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 - 3
[[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 - 3
[[1,2],[3],[4],[5]]
=> [5] => ([],5)
=> ? = 0 - 3
[[1],[2],[3],[4],[5]]
=> [5] => ([],5)
=> ? = 0 - 3
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ? = 0 - 3
[[1,3,4,5,6],[2]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 3
[[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 3
[[1,2,3,4,5],[6]]
=> [6] => ([],6)
=> ? = 0 - 3
[[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,3,4,5],[2,6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 3
[[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 3
[[1,3,4,6],[2],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 3
[[1,3,4,5],[2],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 3
[[1,2,3,4],[5],[6]]
=> [6] => ([],6)
=> ? = 0 - 3
[[1,3,4],[2,5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,3,4],[2,6],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,2,3],[4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 3
[[1,3,4],[2,5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 3
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,2,6],[3],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 3
[[1,3,4],[2],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 3
[[1,2,3],[4],[5],[6]]
=> [6] => ([],6)
=> ? = 0 - 3
[[1,3],[2,4],[5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 6 - 3
[[1,2],[3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 3
[[1,3],[2,4],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 3
[[1,6],[2],[3],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 3
[[1,3],[2],[4],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 3
[[1,2],[3],[4],[5],[6]]
=> [6] => ([],6)
=> ? = 0 - 3
[[1],[2],[3],[4],[5],[6]]
=> [6] => ([],6)
=> ? = 0 - 3
[[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> ? = 0 - 3
[[1,2,4,5,6,7],[3]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
[[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 - 3
[[1,2,3,4,5,6],[7]]
=> [7] => ([],7)
=> ? = 0 - 3
[[1,2,5,6,7],[3,4]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4,5,6],[3,7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4 - 3
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4,5,7],[2],[3],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4,7],[3],[5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4,5],[2,6,7],[3]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,5],[3,4,7],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4],[3,5,7],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4,7],[2,5],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,5],[3,4],[6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4],[3,5],[6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4,7],[2,5],[3],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,7],[3,4],[5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4,5],[2,7],[3],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2,4],[3,7],[5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4,7],[2],[3],[5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4],[2,5],[3,7],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,2],[3,4],[5,7],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
[[1,4],[2,7],[3],[5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 6 - 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001603
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1] => [1] => [1]
=> ? = 0 - 5
[[1,2]]
=> [2] => [1] => [1]
=> ? = 0 - 5
[[1],[2]]
=> [2] => [1] => [1]
=> ? = 0 - 5
[[1,2,3]]
=> [3] => [1] => [1]
=> ? = 0 - 5
[[1,3],[2]]
=> [2,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2],[3]]
=> [3] => [1] => [1]
=> ? = 0 - 5
[[1],[2],[3]]
=> [3] => [1] => [1]
=> ? = 0 - 5
[[1,2,3,4]]
=> [4] => [1] => [1]
=> ? = 0 - 5
[[1,2,4],[3]]
=> [3,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2,3],[4]]
=> [4] => [1] => [1]
=> ? = 0 - 5
[[1,2],[3,4]]
=> [3,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,4],[2],[3]]
=> [3,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2],[3],[4]]
=> [4] => [1] => [1]
=> ? = 0 - 5
[[1],[2],[3],[4]]
=> [4] => [1] => [1]
=> ? = 0 - 5
[[1,2,3,4,5]]
=> [5] => [1] => [1]
=> ? = 0 - 5
[[1,2,3,5],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2,3,4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 5
[[1,2,3],[4,5]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2,5],[3],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2,3],[4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 5
[[1,2],[3,5],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,5],[2],[3],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2],[3],[4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 5
[[1],[2],[3],[4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 5
[[1,2,3,4,5,6]]
=> [6] => [1] => [1]
=> ? = 0 - 5
[[1,3,4,5,6],[2]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2,3,4,6],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2,3,4,5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 5
[[1,3,4,6],[2,5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,3,4,5],[2,6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2,3,4],[5,6]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,3,4,6],[2],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,2,3,6],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,3,4,5],[2],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2,3,4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 5
[[1,3,4],[2,5,6]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,3,6],[2,4],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,3,4],[2,6],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,2,3],[4,6],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,3,4],[2,5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,2,6],[3],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,3,4],[2],[5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2,3],[4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 5
[[1,3],[2,4],[5,6]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 1 = 6 - 5
[[1,2],[3,6],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,3],[2,4],[5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,6],[2],[3],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,3],[2],[4],[5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2],[3],[4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 5
[[1],[2],[3],[4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 5
[[1,2,3,4,5,6,7]]
=> [7] => [1] => [1]
=> ? = 0 - 5
[[1,2,4,5,6,7],[3]]
=> [3,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2,3,4,5,7],[6]]
=> [6,1] => [1,1] => [1,1]
=> ? = 2 - 5
[[1,2,3,4,5,6],[7]]
=> [7] => [1] => [1]
=> ? = 0 - 5
[[1,2,5,6,7],[3,4]]
=> [3,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4,5,6],[3,7]]
=> [3,4] => [1,1] => [1,1]
=> ? = 4 - 5
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4,5,7],[2],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4,7],[3],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4,5],[2,6,7],[3]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,5],[3,4,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4],[3,5,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4,7],[2,5],[3,6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,5],[3,4],[6,7]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4],[3,5],[6,7]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4,7],[2,5],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,7],[3,4],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4,5],[2,7],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2,4],[3,7],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4,7],[2],[3],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4],[2,5],[3,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,2],[3,4],[5,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
[[1,4],[2,7],[3],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 1 = 6 - 5
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001629
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00085: Standard tableaux —Schützenberger involution⟶ Standard tableaux
Mp00294: Standard tableaux —peak composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Mp00294: Standard tableaux —peak composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [[1]]
=> [1] => [1] => ? = 0 - 5
[[1,2]]
=> [[1,2]]
=> [2] => [1] => ? = 0 - 5
[[1],[2]]
=> [[1],[2]]
=> [2] => [1] => ? = 0 - 5
[[1,2,3]]
=> [[1,2,3]]
=> [3] => [1] => ? = 0 - 5
[[1,3],[2]]
=> [[1,2],[3]]
=> [2,1] => [1,1] => ? = 2 - 5
[[1,2],[3]]
=> [[1,3],[2]]
=> [3] => [1] => ? = 0 - 5
[[1],[2],[3]]
=> [[1],[2],[3]]
=> [3] => [1] => ? = 0 - 5
[[1,2,3,4]]
=> [[1,2,3,4]]
=> [4] => [1] => ? = 0 - 5
[[1,2,4],[3]]
=> [[1,2,4],[3]]
=> [2,2] => [2] => ? = 2 - 5
[[1,2,3],[4]]
=> [[1,3,4],[2]]
=> [4] => [1] => ? = 0 - 5
[[1,2],[3,4]]
=> [[1,2],[3,4]]
=> [2,2] => [2] => ? = 2 - 5
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [2,2] => [2] => ? = 2 - 5
[[1,2],[3],[4]]
=> [[1,4],[2],[3]]
=> [4] => [1] => ? = 0 - 5
[[1],[2],[3],[4]]
=> [[1],[2],[3],[4]]
=> [4] => [1] => ? = 0 - 5
[[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> [5] => [1] => ? = 0 - 5
[[1,2,3,5],[4]]
=> [[1,2,4,5],[3]]
=> [2,3] => [1,1] => ? = 2 - 5
[[1,2,3,4],[5]]
=> [[1,3,4,5],[2]]
=> [5] => [1] => ? = 0 - 5
[[1,2,3],[4,5]]
=> [[1,2,5],[3,4]]
=> [2,3] => [1,1] => ? = 2 - 5
[[1,2,5],[3],[4]]
=> [[1,2,5],[3],[4]]
=> [2,3] => [1,1] => ? = 2 - 5
[[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> [5] => [1] => ? = 0 - 5
[[1,2],[3,5],[4]]
=> [[1,2],[3,5],[4]]
=> [2,3] => [1,1] => ? = 2 - 5
[[1,5],[2],[3],[4]]
=> [[1,2],[3],[4],[5]]
=> [2,3] => [1,1] => ? = 2 - 5
[[1,2],[3],[4],[5]]
=> [[1,5],[2],[3],[4]]
=> [5] => [1] => ? = 0 - 5
[[1],[2],[3],[4],[5]]
=> [[1],[2],[3],[4],[5]]
=> [5] => [1] => ? = 0 - 5
[[1,2,3,4,5,6]]
=> [[1,2,3,4,5,6]]
=> [6] => [1] => ? = 0 - 5
[[1,3,4,5,6],[2]]
=> [[1,2,3,4,5],[6]]
=> [5,1] => [1,1] => ? = 4 - 5
[[1,2,3,4,6],[5]]
=> [[1,2,4,5,6],[3]]
=> [2,4] => [1,1] => ? = 2 - 5
[[1,2,3,4,5],[6]]
=> [[1,3,4,5,6],[2]]
=> [6] => [1] => ? = 0 - 5
[[1,3,4,6],[2,5]]
=> [[1,2,4,5],[3,6]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,3,4,5],[2,6]]
=> [[1,3,4,5],[2,6]]
=> [5,1] => [1,1] => ? = 4 - 5
[[1,2,3,4],[5,6]]
=> [[1,2,5,6],[3,4]]
=> [2,4] => [1,1] => ? = 2 - 5
[[1,3,4,6],[2],[5]]
=> [[1,2,4,5],[3],[6]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,2,3,6],[4],[5]]
=> [[1,2,5,6],[3],[4]]
=> [2,4] => [1,1] => ? = 2 - 5
[[1,3,4,5],[2],[6]]
=> [[1,3,4,5],[2],[6]]
=> [5,1] => [1,1] => ? = 4 - 5
[[1,2,3,4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> [6] => [1] => ? = 0 - 5
[[1,3,4],[2,5,6]]
=> [[1,2,5],[3,4,6]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,3,6],[2,4],[5]]
=> [[1,2,5],[3,6],[4]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,3,4],[2,6],[5]]
=> [[1,2,5],[3,4],[6]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,2,3],[4,6],[5]]
=> [[1,2,6],[3,5],[4]]
=> [2,4] => [1,1] => ? = 2 - 5
[[1,3,4],[2,5],[6]]
=> [[1,4,5],[2,6],[3]]
=> [5,1] => [1,1] => ? = 4 - 5
[[1,3,6],[2],[4],[5]]
=> [[1,2,5],[3],[4],[6]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,2,6],[3],[4],[5]]
=> [[1,2,6],[3],[4],[5]]
=> [2,4] => [1,1] => ? = 2 - 5
[[1,3,4],[2],[5],[6]]
=> [[1,4,5],[2],[3],[6]]
=> [5,1] => [1,1] => ? = 4 - 5
[[1,2,3],[4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> [6] => [1] => ? = 0 - 5
[[1,3],[2,4],[5,6]]
=> [[1,2],[3,5],[4,6]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,3],[2,6],[4],[5]]
=> [[1,2],[3,5],[4],[6]]
=> [2,3,1] => [1,1,1] => 1 = 6 - 5
[[1,2],[3,6],[4],[5]]
=> [[1,2],[3,6],[4],[5]]
=> [2,4] => [1,1] => ? = 2 - 5
[[1,3],[2,4],[5],[6]]
=> [[1,5],[2,6],[3],[4]]
=> [5,1] => [1,1] => ? = 4 - 5
[[1,6],[2],[3],[4],[5]]
=> [[1,2],[3],[4],[5],[6]]
=> [2,4] => [1,1] => ? = 2 - 5
[[1,3],[2],[4],[5],[6]]
=> [[1,5],[2],[3],[4],[6]]
=> [5,1] => [1,1] => ? = 4 - 5
[[1,2],[3],[4],[5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> [6] => [1] => ? = 0 - 5
[[1],[2],[3],[4],[5],[6]]
=> [[1],[2],[3],[4],[5],[6]]
=> [6] => [1] => ? = 0 - 5
[[1,2,3,4,5,6,7]]
=> [[1,2,3,4,5,6,7]]
=> [7] => [1] => ? = 0 - 5
[[1,2,4,5,6,7],[3]]
=> [[1,2,3,4,5,7],[6]]
=> [5,2] => [1,1] => ? = 4 - 5
[[1,2,3,4,5,7],[6]]
=> [[1,2,4,5,6,7],[3]]
=> [2,5] => [1,1] => ? = 2 - 5
[[1,2,3,4,5,6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> [7] => [1] => ? = 0 - 5
[[1,2,5,6,7],[3,4]]
=> [[1,2,3,4,5],[6,7]]
=> [5,2] => [1,1] => ? = 4 - 5
[[1,2,4,5,7],[3,6]]
=> [[1,2,4,5,7],[3,6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4,5,6],[3,7]]
=> [[1,3,4,5,7],[2,6]]
=> [5,2] => [1,1] => ? = 4 - 5
[[1,2,4,5,7],[3],[6]]
=> [[1,2,4,5,7],[3],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,5,7],[3,4,6]]
=> [[1,2,4,5],[3,6,7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4,5],[3,6,7]]
=> [[1,2,5,7],[3,4,6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4,5,7],[2,6],[3]]
=> [[1,2,4,5],[3,6],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,5,7],[3,4],[6]]
=> [[1,2,4,5],[3,7],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4,7],[3,5],[6]]
=> [[1,2,5,7],[3,6],[4]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4,5],[3,7],[6]]
=> [[1,2,5,7],[3,4],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4,5,7],[2],[3],[6]]
=> [[1,2,4,5],[3],[6],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4,7],[3],[5],[6]]
=> [[1,2,5,7],[3],[4],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4,5],[2,6,7],[3]]
=> [[1,2,5],[3,4,6],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,5],[3,4,7],[6]]
=> [[1,2,5],[3,4,7],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4],[3,5,7],[6]]
=> [[1,2,5],[3,6,7],[4]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4,7],[2,5],[3,6]]
=> [[1,2,5],[3,6],[4,7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,5],[3,4],[6,7]]
=> [[1,2,5],[3,4],[6,7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4],[3,5],[6,7]]
=> [[1,2,7],[3,5],[4,6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4,7],[2,5],[3],[6]]
=> [[1,2,5],[3,6],[4],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,7],[3,4],[5],[6]]
=> [[1,2,5],[3,7],[4],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4,5],[2,7],[3],[6]]
=> [[1,2,5],[3,4],[6],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2,4],[3,7],[5],[6]]
=> [[1,2,7],[3,5],[4],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4,7],[2],[3],[5],[6]]
=> [[1,2,5],[3],[4],[6],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4],[2,5],[3,7],[6]]
=> [[1,2],[3,5],[4,6],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,2],[3,4],[5,7],[6]]
=> [[1,2],[3,5],[4,7],[6]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
[[1,4],[2,7],[3],[5],[6]]
=> [[1,2],[3,5],[4],[6],[7]]
=> [2,3,2] => [1,1,1] => 1 = 6 - 5
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Matching statistic: St001604
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 28%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1] => [1] => [1]
=> ? = 0 - 6
[[1,2]]
=> [2] => [1] => [1]
=> ? = 0 - 6
[[1],[2]]
=> [2] => [1] => [1]
=> ? = 0 - 6
[[1,2,3]]
=> [3] => [1] => [1]
=> ? = 0 - 6
[[1,3],[2]]
=> [2,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2],[3]]
=> [3] => [1] => [1]
=> ? = 0 - 6
[[1],[2],[3]]
=> [3] => [1] => [1]
=> ? = 0 - 6
[[1,2,3,4]]
=> [4] => [1] => [1]
=> ? = 0 - 6
[[1,2,4],[3]]
=> [3,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2,3],[4]]
=> [4] => [1] => [1]
=> ? = 0 - 6
[[1,2],[3,4]]
=> [3,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,4],[2],[3]]
=> [3,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2],[3],[4]]
=> [4] => [1] => [1]
=> ? = 0 - 6
[[1],[2],[3],[4]]
=> [4] => [1] => [1]
=> ? = 0 - 6
[[1,2,3,4,5]]
=> [5] => [1] => [1]
=> ? = 0 - 6
[[1,2,3,5],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2,3,4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 6
[[1,2,3],[4,5]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2,5],[3],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2,3],[4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 6
[[1,2],[3,5],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,5],[2],[3],[4]]
=> [4,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2],[3],[4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 6
[[1],[2],[3],[4],[5]]
=> [5] => [1] => [1]
=> ? = 0 - 6
[[1,2,3,4,5,6]]
=> [6] => [1] => [1]
=> ? = 0 - 6
[[1,3,4,5,6],[2]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2,3,4,6],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2,3,4,5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 6
[[1,3,4,6],[2,5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,3,4,5],[2,6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2,3,4],[5,6]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,3,4,6],[2],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,2,3,6],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,3,4,5],[2],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2,3,4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 6
[[1,3,4],[2,5,6]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,3,6],[2,4],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,3,4],[2,6],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,2,3],[4,6],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,3,4],[2,5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,2,6],[3],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,3,4],[2],[5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2,3],[4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 6
[[1,3],[2,4],[5,6]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => [1,1,1] => [1,1,1]
=> 0 = 6 - 6
[[1,2],[3,6],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,3],[2,4],[5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,6],[2],[3],[4],[5]]
=> [5,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,3],[2],[4],[5],[6]]
=> [2,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2],[3],[4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 6
[[1],[2],[3],[4],[5],[6]]
=> [6] => [1] => [1]
=> ? = 0 - 6
[[1,2,3,4,5,6,7]]
=> [7] => [1] => [1]
=> ? = 0 - 6
[[1,2,4,5,6,7],[3]]
=> [3,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2,3,4,5,7],[6]]
=> [6,1] => [1,1] => [1,1]
=> ? = 2 - 6
[[1,2,3,4,5,6],[7]]
=> [7] => [1] => [1]
=> ? = 0 - 6
[[1,2,5,6,7],[3,4]]
=> [3,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4,5,6],[3,7]]
=> [3,4] => [1,1] => [1,1]
=> ? = 4 - 6
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4,5,7],[2],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4,7],[3],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4,5],[2,6,7],[3]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,5],[3,4,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4],[3,5,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4,7],[2,5],[3,6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,5],[3,4],[6,7]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4],[3,5],[6,7]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4,7],[2,5],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,7],[3,4],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4,5],[2,7],[3],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2,4],[3,7],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4,7],[2],[3],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4],[2,5],[3,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,2],[3,4],[5,7],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
[[1,4],[2,7],[3],[5],[6]]
=> [3,3,1] => [2,1] => [2,1]
=> 0 = 6 - 6
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001703
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001703: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001703: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1] => ([],1)
=> 0
[[1,2]]
=> [2] => ([],2)
=> 0
[[1],[2]]
=> [2] => ([],2)
=> 0
[[1,2,3]]
=> [3] => ([],3)
=> 0
[[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
[[1,2],[3]]
=> [3] => ([],3)
=> 0
[[1],[2],[3]]
=> [3] => ([],3)
=> 0
[[1,2,3,4]]
=> [4] => ([],4)
=> 0
[[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,3],[4]]
=> [4] => ([],4)
=> 0
[[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [4] => ([],4)
=> 0
[[1],[2],[3],[4]]
=> [4] => ([],4)
=> 0
[[1,2,3,4,5]]
=> [5] => ([],5)
=> 0
[[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2,3,4],[5]]
=> [5] => ([],5)
=> 0
[[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,2],[3],[4],[5]]
=> [5] => ([],5)
=> 0
[[1],[2],[3],[4],[5]]
=> [5] => ([],5)
=> 0
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ? = 0
[[1,3,4,5,6],[2]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,2,3,4,5],[6]]
=> [6] => ([],6)
=> ? = 0
[[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3,4,5],[2,6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4,6],[2],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4,5],[2],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3,4],[5],[6]]
=> [6] => ([],6)
=> ? = 0
[[1,3,4],[2,5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3,4],[2,6],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2,3],[4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4],[2,5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2,6],[3],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3,4],[2],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2,3],[4],[5],[6]]
=> [6] => ([],6)
=> ? = 0
[[1,3],[2,4],[5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[1,2],[3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3],[2,4],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,6],[2],[3],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[1,3],[2],[4],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 4
[[1,2],[3],[4],[5],[6]]
=> [6] => ([],6)
=> ? = 0
[[1],[2],[3],[4],[5],[6]]
=> [6] => ([],6)
=> ? = 0
[[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> ? = 0
[[1,2,4,5,6,7],[3]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,2,3,4,5,6],[7]]
=> [7] => ([],7)
=> ? = 0
[[1,2,5,6,7],[3,4]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,5,6],[3,7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,4,5,6,7],[2],[3]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[1,2,4,5,6],[3],[7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,3,4,5],[6],[7]]
=> [7] => ([],7)
=> ? = 0
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5,6],[3,4,7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4,5,6],[2,7],[3]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
Description
The villainy of a graph.
The villainy of a permutation of a proper coloring $c$ of a graph is the minimal Hamming distance between $c$ and a proper coloring.
The villainy of a graph is the maximal villainy of a permutation of a proper coloring.
Matching statistic: St000950
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000950: Dyck paths ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000950: Dyck paths ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1] => [1] => [1,0]
=> 2 = 0 + 2
[[1,2]]
=> [2] => [1,1] => [1,0,1,0]
=> 2 = 0 + 2
[[1],[2]]
=> [2] => [1,1] => [1,0,1,0]
=> 2 = 0 + 2
[[1,2,3]]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,3],[2]]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,2],[3]]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 0 + 2
[[1],[2],[3]]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2,3,4]]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2,4],[3]]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,2,3],[4]]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2],[3,4]]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,4],[2],[3]]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,2],[3],[4]]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1],[2],[3],[4]]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2,3,4,5]]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2,3,5],[4]]
=> [4,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,2,3,4],[5]]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2,3],[4,5]]
=> [4,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,2,5],[3],[4]]
=> [4,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,2,3],[4],[5]]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2],[3,5],[4]]
=> [4,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,5],[2],[3],[4]]
=> [4,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 4 = 2 + 2
[[1,2],[3],[4],[5]]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1],[2],[3],[4],[5]]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,3,4,5,6],[2]]
=> [2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,3,4,6],[5]]
=> [5,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,2,3,4,5],[6]]
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,3,4,6],[2,5]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,3,4,5],[2,6]]
=> [2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,3,4],[5,6]]
=> [5,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,3,4,6],[2],[5]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,3,6],[4],[5]]
=> [5,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,3,4,5],[2],[6]]
=> [2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,3,4],[5],[6]]
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,3,4],[2,5,6]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,3,6],[2,4],[5]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,3,4],[2,6],[5]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,3],[4,6],[5]]
=> [5,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,3,4],[2,5],[6]]
=> [2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,6],[3],[4],[5]]
=> [5,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,3,4],[2],[5],[6]]
=> [2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,3],[4],[5],[6]]
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,3],[2,4],[5,6]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2],[3,6],[4],[5]]
=> [5,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,3],[2,4],[5],[6]]
=> [2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,6],[2],[3],[4],[5]]
=> [5,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,3],[2],[4],[5],[6]]
=> [2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2],[3],[4],[5],[6]]
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1],[2],[3],[4],[5],[6]]
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,2,3,4,5,6,7]]
=> [7] => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,2,4,5,6,7],[3]]
=> [3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,3,4,5,7],[6]]
=> [6,1] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,2,3,4,5,6],[7]]
=> [7] => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,2,5,6,7],[3,4]]
=> [3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,4,5,6],[3,7]]
=> [3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,3,4,5],[6,7]]
=> [6,1] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,4,5,6,7],[2],[3]]
=> [3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,3,4,7],[5],[6]]
=> [6,1] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
[[1,2,4,5,6],[3],[7]]
=> [3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,3,4,5],[6],[7]]
=> [7] => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,5,6],[3,4,7]]
=> [3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,4,5,6],[2,7],[3]]
=> [3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 2
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 6 + 2
[[1,2,3,4],[5,7],[6]]
=> [6,1] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 2
Description
Number of tilting modules of the corresponding LNakayama algebra, where a tilting module is a generalised tilting module of projective dimension 1.
Matching statistic: St000699
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000699: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 25%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000699: Graphs ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 25%
Values
[[1]]
=> [1] => [1] => ([],1)
=> ? = 0 - 5
[[1,2]]
=> [2] => [1] => ([],1)
=> ? = 0 - 5
[[1],[2]]
=> [2] => [1] => ([],1)
=> ? = 0 - 5
[[1,2,3]]
=> [3] => [1] => ([],1)
=> ? = 0 - 5
[[1,3],[2]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2],[3]]
=> [3] => [1] => ([],1)
=> ? = 0 - 5
[[1],[2],[3]]
=> [3] => [1] => ([],1)
=> ? = 0 - 5
[[1,2,3,4]]
=> [4] => [1] => ([],1)
=> ? = 0 - 5
[[1,2,4],[3]]
=> [3,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2,3],[4]]
=> [4] => [1] => ([],1)
=> ? = 0 - 5
[[1,2],[3,4]]
=> [3,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,4],[2],[3]]
=> [3,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2],[3],[4]]
=> [4] => [1] => ([],1)
=> ? = 0 - 5
[[1],[2],[3],[4]]
=> [4] => [1] => ([],1)
=> ? = 0 - 5
[[1,2,3,4,5]]
=> [5] => [1] => ([],1)
=> ? = 0 - 5
[[1,2,3,5],[4]]
=> [4,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2,3,4],[5]]
=> [5] => [1] => ([],1)
=> ? = 0 - 5
[[1,2,3],[4,5]]
=> [4,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2,5],[3],[4]]
=> [4,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2,3],[4],[5]]
=> [5] => [1] => ([],1)
=> ? = 0 - 5
[[1,2],[3,5],[4]]
=> [4,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,5],[2],[3],[4]]
=> [4,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2],[3],[4],[5]]
=> [5] => [1] => ([],1)
=> ? = 0 - 5
[[1],[2],[3],[4],[5]]
=> [5] => [1] => ([],1)
=> ? = 0 - 5
[[1,2,3,4,5,6]]
=> [6] => [1] => ([],1)
=> ? = 0 - 5
[[1,3,4,5,6],[2]]
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 4 - 5
[[1,2,3,4,6],[5]]
=> [5,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,2,3,4,5],[6]]
=> [6] => [1] => ([],1)
=> ? = 0 - 5
[[1,3,4,6],[2,5]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,3,4,5],[2,6]]
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 4 - 5
[[1,2,3,4],[5,6]]
=> [5,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,3,4,6],[2],[5]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,2,3,6],[4],[5]]
=> [5,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,3,4,5],[2],[6]]
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 4 - 5
[[1,2,3,4],[5],[6]]
=> [6] => [1] => ([],1)
=> ? = 0 - 5
[[1,3,4],[2,5,6]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,3,6],[2,4],[5]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,3,4],[2,6],[5]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,2,3],[4,6],[5]]
=> [5,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,3,4],[2,5],[6]]
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 4 - 5
[[1,3,6],[2],[4],[5]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,2,6],[3],[4],[5]]
=> [5,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,3,4],[2],[5],[6]]
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 4 - 5
[[1,2,3],[4],[5],[6]]
=> [6] => [1] => ([],1)
=> ? = 0 - 5
[[1,3],[2,4],[5,6]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,3],[2,6],[4],[5]]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ? = 6 - 5
[[1,2],[3,6],[4],[5]]
=> [5,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,3],[2,4],[5],[6]]
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 4 - 5
[[1,6],[2],[3],[4],[5]]
=> [5,1] => [1,1] => ([(0,1)],2)
=> ? = 2 - 5
[[1,3],[2],[4],[5],[6]]
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 4 - 5
[[1,2,4,5,7],[3,6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4,5,7],[3],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,5,7],[3,4,6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4,5],[3,6,7]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4,5,7],[2,6],[3]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,5,7],[3,4],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4,7],[3,5],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4,5],[3,7],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4,5,7],[2],[3],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4,7],[3],[5],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4,5],[2,6,7],[3]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,5],[3,4,7],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4],[3,5,7],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4,7],[2,5],[3,6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,5],[3,4],[6,7]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4],[3,5],[6,7]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4,7],[2,5],[3],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,7],[3,4],[5],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4,5],[2,7],[3],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2,4],[3,7],[5],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4,7],[2],[3],[5],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4],[2,5],[3,7],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,2],[3,4],[5,7],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
[[1,4],[2,7],[3],[5],[6]]
=> [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 6 - 5
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph.
A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$.
The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero.
This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
The following 1 statistic also match your data. Click on any of them to see the details.
St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!