searching the database
Your data matches 23 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000106
St000106: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2
['A',2]
=> 6
['B',2]
=> 8
['G',2]
=> 12
Description
The size of the associated Weyl group.
Matching statistic: St000063
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 8
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 12
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Matching statistic: St000184
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000184: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000184: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 8
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 12
Description
The size of the centralizer of any permutation of given cycle type.
The centralizer (or commutant, equivalently normalizer) of an element $g$ of a group $G$ is the set of elements of $G$ that commute with $g$:
$$C_g = \{h \in G : hgh^{-1} = g\}.$$
Its size thus depends only on the conjugacy class of $g$.
The conjugacy classes of a permutation is determined by its cycle type, and the size of the centralizer of a permutation with cycle type $\lambda = (1^{a_1},2^{a_2},\dots)$ is
$$|C| = \Pi j^{a_j} a_j!$$
For example, for any permutation with cycle type $\lambda = (3,2,2,1)$,
$$|C| = (3^1 \cdot 1!)(2^2 \cdot 2!)(1^1 \cdot 1!) = 24.$$
There is exactly one permutation of the empty set, the identity, so the statistic on the empty partition is $1$.
Matching statistic: St000708
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 8
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 12
Description
The product of the parts of an integer partition.
Matching statistic: St000350
Values
['A',1]
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4 = 6 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 6 = 8 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 10 = 12 - 2
Description
The sum of the vertex degrees of a graph.
This is clearly equal to twice the number of edges, and, incidentally, also equal to the trace of the Laplacian matrix of a graph. From this it follows that it is also the sum of the squares of the eigenvalues of the adjacency matrix of the graph.
The Laplacian matrix is defined as $D-A$ where $D$ is the degree matrix (the diagonal matrix with the vertex degrees on the diagonal) and where $A$ is the adjacency matrix. See [1] for detailed definitions.
Matching statistic: St000300
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 8
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 12
Description
The number of independent sets of vertices of a graph.
An independent set of vertices of a graph $G$ is a subset $U \subset V(G)$ such that no two vertices in $U$ are adjacent.
This is also the number of vertex covers of $G$ as the map $U \mapsto V(G)\setminus U$ is a bijection between independent sets of vertices and vertex covers.
The size of the largest independent set, also called independence number of $G$, is [[St000093]]
Matching statistic: St000468
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 12
Description
The Hosoya index of a graph.
This is the total number of matchings in the graph.
Matching statistic: St001808
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001808: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001808: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 8
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 12
Description
The box weight or horizontal decoration of a Dyck path.
Let a Dyck path $D = (d_1,d_2,\dots,d_n)$ with steps $d_i \in \{N=(0,1),E=(1,0)\}$ be given.
For the $i$th step $d_i \in D$ we define the weight
$$
\beta(d_i) = 1, \quad \text{ if } d_i=N,
$$
and
$$
\beta(d_i) = \sum_{k = 1}^{i} [\![ d_k = N]\!], \quad \text{ if } d_i=E,
$$
where we use the Iverson bracket $[\![ A ]\!]$ that is equal to $1$ if $A$ is true, and $0$ otherwise.
The '''box weight''' or '''horizontal deocration''' of $D$ is defined as
$$
\prod_{i=1}^{n} \beta(d_i).
$$
The name describes the fact that between each $E$ step and the line $y=-1$ exactly one unit box is marked.
Matching statistic: St000979
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000979: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000979: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 4 = 6 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 6 = 8 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 10 = 12 - 2
Description
Half of MacMahon's equal index of a Dyck path.
This is half the sum of the positions of double (up- or down-)steps of a Dyck path, see [1, p. 135].
Matching statistic: St000641
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000641: Posets ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 75%
St000641: Posets ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> ? = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 5 = 6 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 7 = 8 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 11 = 12 - 1
Description
The number of non-empty boolean intervals in a poset.
The following 13 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001834The number of non-isomorphic minors of a graph. St000081The number of edges of a graph. St000978The sum of the positions of double down-steps of a Dyck path. St001649The length of a longest trail in a graph. St000438The position of the last up step in a Dyck path. St000874The position of the last double rise in a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St000981The length of the longest zigzag subpath. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St001500The global dimension of magnitude 1 Nakayama algebras. St000933The number of multipartitions of sizes given by an integer partition. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St000940The number of characters of the symmetric group whose value on the partition is zero.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!