searching the database
Your data matches 69 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000770
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[2,2]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1],[2],[4]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[3],[4]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[2],[3],[4]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[2,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[3,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[2,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[3,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,2],[3,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,2],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,3],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1,1],[2,2]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
[[1,1,2],[2,2]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
[[1],[2],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[3],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[4],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[2],[3],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[2],[4],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[3],[4],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,3],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,3],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,2],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,2],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,3],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,3],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[3,3],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,2],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,4],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,3],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,4],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[2,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[2,3],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[2,4],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 4
[[1,1,1],[2,3]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
[[1,1,1],[3,3]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
Description
The major index of an integer partition when read from bottom to top.
This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top.
For example, the partition λ=(8,6,6,4,3,3) has corners at positions 3,6,9, and 13, giving a major index of 31.
Matching statistic: St001171
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001171: Permutations ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 43%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001171: Permutations ⟶ ℤResult quality: 21% ●values known / values provided: 21%●distinct values known / distinct values provided: 43%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1],[2,2]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1],[2,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[2,3]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1],[2,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,3],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => [1,4,2,3] => 3 = 4 - 1
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [2,1,3,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,2,3,5,4] => ? = 2 - 1
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,3,5,2,4] => [1,2,3,5,4] => ? = 2 - 1
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => [1,2,4,3,5] => ? = 2 - 1
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,1,5,3,4] => [1,2,3,5,4] => ? = 2 - 1
[[1,2,3],[2],[3]]
=> [4,2,1,3,5] => [2,4,1,3,5] => [1,2,4,3,5] => ? = 2 - 1
[[1,3,3],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,3,2,4,5] => ? = 2 - 1
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [1,3,5,4,2] => [1,2,3,5,4] => ? = 3 - 1
[[1,1],[2,3],[3]]
=> [4,3,5,1,2] => [1,4,3,5,2] => [1,2,4,5,3] => ? = 3 - 1
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => [1,2,4,5,3] => ? = 3 - 1
[[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => [1,2,3,5,6,4] => [1,2,3,4,5,6] => ? = 1 - 1
[[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => [1,2,4,5,3,6] => [1,2,3,4,5,6] => ? = 1 - 1
[[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => [1,3,4,2,5,6] => [1,2,3,4,5,6] => ? = 1 - 1
[[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [1,2,4,5,6,3] => [1,2,3,4,5,6] => ? = 1 - 1
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1,1],[2,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[3,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[2,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[3,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[2,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[2,4]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[3,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[3,4]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[4,4]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[2,4]]
=> [2,5,1,3,4] => [2,1,3,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[3,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[2,4]]
=> [2,5,1,3,4] => [2,1,3,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,4],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,4],[2,4]]
=> [2,4,1,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[3,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
Description
The vector space dimension of Ext1A(Io,A) when Io is the tilting module corresponding to the permutation o in the Auslander algebra A of K[x]/(xn).
Matching statistic: St001491
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 29%
Mp00095: Integer partitions —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,2]]
=> [2,2]
=> 1100 => 1
[[1],[2],[4]]
=> [1,1,1]
=> 1110 => 2
[[1],[3],[4]]
=> [1,1,1]
=> 1110 => 2
[[2],[3],[4]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,3]]
=> [2,2]
=> 1100 => 1
[[1,1],[3,3]]
=> [2,2]
=> 1100 => 1
[[1,2],[2,3]]
=> [2,2]
=> 1100 => 1
[[1,2],[3,3]]
=> [2,2]
=> 1100 => 1
[[2,2],[3,3]]
=> [2,2]
=> 1100 => 1
[[1,1],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1,1],[2,2]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,2],[2,2]]
=> [3,2]
=> 10100 => ? = 1
[[1],[2],[5]]
=> [1,1,1]
=> 1110 => 2
[[1],[3],[5]]
=> [1,1,1]
=> 1110 => 2
[[1],[4],[5]]
=> [1,1,1]
=> 1110 => 2
[[2],[3],[5]]
=> [1,1,1]
=> 1110 => 2
[[2],[4],[5]]
=> [1,1,1]
=> 1110 => 2
[[3],[4],[5]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,4]]
=> [2,2]
=> 1100 => 1
[[1,1],[3,4]]
=> [2,2]
=> 1100 => 1
[[1,1],[4,4]]
=> [2,2]
=> 1100 => 1
[[1,2],[2,4]]
=> [2,2]
=> 1100 => 1
[[1,2],[3,4]]
=> [2,2]
=> 1100 => 1
[[1,3],[2,4]]
=> [2,2]
=> 1100 => 1
[[1,2],[4,4]]
=> [2,2]
=> 1100 => 1
[[1,3],[3,4]]
=> [2,2]
=> 1100 => 1
[[1,3],[4,4]]
=> [2,2]
=> 1100 => 1
[[2,2],[3,4]]
=> [2,2]
=> 1100 => 1
[[2,2],[4,4]]
=> [2,2]
=> 1100 => 1
[[2,3],[3,4]]
=> [2,2]
=> 1100 => 1
[[2,3],[4,4]]
=> [2,2]
=> 1100 => 1
[[3,3],[4,4]]
=> [2,2]
=> 1100 => 1
[[1,1],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,4],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,4],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,4],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[2,2],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[2,3],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[2,4],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> 11110 => ? = 4
[[1,1,1],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,1],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,2],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,3],[2,2]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,2],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,3],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,3],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,2],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,2],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,3],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,3],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[2,2,2],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[2,2,3],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,1],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,1,2],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,1,3],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,2,2],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,2,3],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,3,3],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,1],[2,2],[3]]
=> [2,2,1]
=> 11010 => ? = 3
[[1,1],[2,3],[3]]
=> [2,2,1]
=> 11010 => ? = 3
[[1,2],[2,3],[3]]
=> [2,2,1]
=> 11010 => ? = 3
[[1,1,1,1],[2,2]]
=> [4,2]
=> 100100 => ? = 1
[[1,1,1,2],[2,2]]
=> [4,2]
=> 100100 => ? = 1
[[1,1,2,2],[2,2]]
=> [4,2]
=> 100100 => ? = 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> 11000 => ? = 1
[[1],[2],[6]]
=> [1,1,1]
=> 1110 => 2
[[1],[3],[6]]
=> [1,1,1]
=> 1110 => 2
[[1],[4],[6]]
=> [1,1,1]
=> 1110 => 2
[[1],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[2],[3],[6]]
=> [1,1,1]
=> 1110 => 2
[[2],[4],[6]]
=> [1,1,1]
=> 1110 => 2
[[2],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[3],[4],[6]]
=> [1,1,1]
=> 1110 => 2
[[3],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[4],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[3,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[4,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[5,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[3,5]]
=> [2,2]
=> 1100 => 1
[[1,3],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[4,5]]
=> [2,2]
=> 1100 => 1
[[1,4],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[5,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[2],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1],[3],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1],[4],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[2],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[3],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[2],[5]]
=> [2,1,1]
=> 10110 => ? = 2
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let An=K[x]/(xn).
We associate to a nonempty subset S of an (n-1)-set the module MS, which is the direct sum of An-modules with indecomposable non-projective direct summands of dimension i when i is in S (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of MS. We decode the subset as a binary word so that for example the subset S={1,3} of {1,2,3} is decoded as 101.
Matching statistic: St001722
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
St001722: Binary words ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 29%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00093: Dyck paths —to binary word⟶ Binary words
St001722: Binary words ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1],[2],[4]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[3],[4]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[3],[4]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[3,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[2,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[3,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,2],[3,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1,1],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,2],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1],[2],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[3],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[4],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[3],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[4],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[3],[4],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,2],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,2],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,3],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,3],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[3,3],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,4],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,4],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[2,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[2,3],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[2,4],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => ? = 4
[[1,1,1],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,1],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,2],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,3],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,2],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,3],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,3],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,2],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,2],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,3],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,3],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[2,2,2],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[2,2,3],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,1],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,1,2],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,1,3],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,2,2],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,2,3],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,3,3],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 3
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 3
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 3
[[1,1,1,1],[2,2]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1
[[1,1,1,2],[2,2]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1
[[1,1,2,2],[2,2]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => ? = 1
[[1],[2],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[3],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[4],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[3],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[4],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[3],[4],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[3],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[4],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[3,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[4,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[5,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[3,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[4,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,4],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[5,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[2],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1],[3],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1],[4],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[2],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[3],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[2],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
Description
The number of minimal chains with small intervals between a binary word and the top element.
A valley in a binary word is a subsequence 01, or a trailing 0. A peak is a subsequence 10 or a trailing 1. Let P be the lattice on binary words of length n, where the covering elements of a word are obtained by replacing a valley with a peak. An interval [w1,w2] in P is small if w2 is obtained from w1 by replacing some valleys with peaks.
This statistic counts the number of chains w=w1<⋯<wd=1…1 to the top element of minimal length.
For example, there are two such chains for the word 0110:
0110<1011<1101<1110<1111
and
0110<1010<1101<1110<1111.
Matching statistic: St001754
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001754: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 29%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001754: Lattices ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,2]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1],[2],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[2,3]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,3],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1],[2],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[3],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[2,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[3,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,1],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,4],[2],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,4],[3],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[2,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[2,4],[3],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 4 + 1
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [3,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 1 + 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [5,4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 1 + 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [4,3,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 1 + 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2 + 1
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 1
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 2 + 1
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 1
[[1,2,3],[2],[3]]
=> [4,2,1,3,5] => [2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 2 + 1
[[1,3,3],[2],[3]]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 2 + 1
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
[[1,1],[2,3],[3]]
=> [4,3,5,1,2] => [4,1,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 3 + 1
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => [5,3,1,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 1
[[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => [5,3,1,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,9),(3,9),(4,9),(5,9),(6,7),(7,8),(9,7)],10)
=> ? = 1 + 1
[[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => [3,1,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,7),(6,7),(6,8),(7,9),(8,9),(10,8)],11)
=> ? = 1 + 1
[[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 1
[[1],[2],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[3],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[4],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[3],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[4],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[3],[4],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[3],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[4],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[3,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[2,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[3,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,4],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[3,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,3],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,3],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
Description
The number of tolerances of a finite lattice.
Let L be a lattice. A tolerance τ is a reflexive and symmetric relation on L which is compatible with meet and join. Equivalently, a tolerance of L is the image of a congruence by a surjective lattice homomorphism onto L.
The number of tolerances of a chain of n elements is the Catalan number \frac{1}{n+1}\binom{2n}{n}, see [2].
Matching statistic: St001626
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001626: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 29%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001626: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,2],[2,3]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,2],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,3],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4 + 2
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 2
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 1 + 2
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 2
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2 + 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2 + 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 2
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,2],[2,4],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1,2],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1,3],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[2,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
Description
The number of maximal proper sublattices of a lattice.
Matching statistic: St001875
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 29%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,1],[2,2]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,1],[2,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,2],[2,3]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,1],[2,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,2],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,3],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[2,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[3,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4 + 3
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 3
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 1 + 3
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 3
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2 + 3
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2 + 3
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 3
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 3
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,2],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[3,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,2],[2,4],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1,2],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1,3],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[2,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001624
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 14%
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 14%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,3]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[5],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer b such that any join x_1\vee x_2\vee\cdots\vee x_n, with n > b, can be expressed as a join over a proper subset of \{x_1,x_2,\ldots,x_n\}.
Matching statistic: St001630
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 14%
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 14%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,3]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[5],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00075: Semistandard tableaux —reading word permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 14%
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 14%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,3]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[5],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
The following 59 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000189The number of elements in the poset. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001857The number of edges in the reduced word graph of a signed permutation. St001926Sparre Andersen's position of the maximum of a signed permutation. St000084The number of subtrees. St000168The number of internal nodes of an ordered tree. St000328The maximum number of child nodes in a tree. St000417The size of the automorphism group of the ordered tree. St000679The pruning number of an ordered tree. St001058The breadth of the ordered tree. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000075The orbit size of a standard tableau under promotion. St000080The rank of the poset. St000166The depth minus 1 of an ordered tree. St000173The segment statistic of a semistandard tableau. St000174The flush statistic of a semistandard tableau. St000181The number of connected components of the Hasse diagram for the poset. St000522The number of 1-protected nodes of a rooted tree. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000782The indicator function of whether a given perfect matching is an L & P matching. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001625The Möbius invariant of a lattice. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St001890The maximum magnitude of the Möbius function of a poset. St000094The depth of an ordered tree. St000116The major index of a semistandard tableau obtained by standardizing. St000327The number of cover relations in a poset. St000413The number of ordered trees with the same underlying unordered tree. St000521The number of distinct subtrees of an ordered tree. St000635The number of strictly order preserving maps of a poset into itself. St000973The length of the boundary of an ordered tree. St000975The length of the boundary minus the length of the trunk of an ordered tree. St001645The pebbling number of a connected graph. St001713The difference of the first and last value in the first row of the Gelfand-Tsetlin pattern. St001877Number of indecomposable injective modules with projective dimension 2. St001964The interval resolution global dimension of a poset. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000415The size of the automorphism group of the rooted tree underlying the ordered tree. St000307The number of rowmotion orbits of a poset. St000104The number of facets in the order polytope of this poset. St000151The number of facets in the chain polytope of the poset. St000400The path length of an ordered tree. St000529The number of permutations whose descent word is the given binary word. St000180The number of chains of a poset. St000416The number of inequivalent increasing trees of an ordered tree. St001168The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St000100The number of linear extensions of a poset. St001909The number of interval-closed sets of a poset. St000410The tree factorial of an ordered tree. St000634The number of endomorphisms of a poset. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!