Processing math: 79%

Your data matches 69 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000770
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00322: Integer partitions Loehr-WarringtonInteger partitions
St000770: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[2,2]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1],[2],[4]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[3],[4]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[2],[3],[4]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[2,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[3,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[2,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[3,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,2],[3,3]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,2],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,3],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1,1],[2,2]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
[[1,1,2],[2,2]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
[[1],[2],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[3],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[4],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[2],[3],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[2],[4],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[3],[4],[5]]
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,2],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,3],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,3],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,2],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,2],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,3],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[2,3],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[3,3],[4,4]]
=> [2,2]
=> [2]
=> [1,1]
=> 1
[[1,1],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,1],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,2],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,4],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,3],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1,4],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[2,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[2,3],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[2,4],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 4
[[1,1,1],[2,3]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
[[1,1,1],[3,3]]
=> [3,2]
=> [2]
=> [1,1]
=> 1
Description
The major index of an integer partition when read from bottom to top. This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top. For example, the partition λ=(8,6,6,4,3,3) has corners at positions 3,6,9, and 13, giving a major index of 31.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St001171: Permutations ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 43%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1],[2,2]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1],[2,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[2,3]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1],[2,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,3],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[2,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => [1,2,3,4] => 0 = 1 - 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => [1,2,3,4] => 0 = 1 - 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => [1,2,4,3] => 1 = 2 - 1
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => [1,2,4,3] => 1 = 2 - 1
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => [1,3,2,4] => 1 = 2 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => [1,4,2,3] => 3 = 4 - 1
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [2,1,3,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,2,3,5,4] => ? = 2 - 1
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,3,5,2,4] => [1,2,3,5,4] => ? = 2 - 1
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => [1,2,4,3,5] => ? = 2 - 1
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,1,5,3,4] => [1,2,3,5,4] => ? = 2 - 1
[[1,2,3],[2],[3]]
=> [4,2,1,3,5] => [2,4,1,3,5] => [1,2,4,3,5] => ? = 2 - 1
[[1,3,3],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,3,2,4,5] => ? = 2 - 1
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [1,3,5,4,2] => [1,2,3,5,4] => ? = 3 - 1
[[1,1],[2,3],[3]]
=> [4,3,5,1,2] => [1,4,3,5,2] => [1,2,4,5,3] => ? = 3 - 1
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => [1,2,4,5,3] => ? = 3 - 1
[[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => [1,2,3,5,6,4] => [1,2,3,4,5,6] => ? = 1 - 1
[[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => [1,2,4,5,3,6] => [1,2,3,4,5,6] => ? = 1 - 1
[[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => [1,3,4,2,5,6] => [1,2,3,4,5,6] => ? = 1 - 1
[[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [1,2,4,5,6,3] => [1,2,3,4,5,6] => ? = 1 - 1
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => [1,3,2] => 1 = 2 - 1
[[1,1,1],[2,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[3,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,1],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[2,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[3,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[2,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,2],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[2,4]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[3,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,3],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[3,4]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,1,4],[4,4]]
=> [3,4,1,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[2,4]]
=> [2,5,1,3,4] => [2,1,3,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[3,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[2,4]]
=> [2,5,1,3,4] => [2,1,3,5,4] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,4],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,2],[4,4]]
=> [4,5,1,2,3] => [1,2,4,5,3] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,4],[2,4]]
=> [2,4,1,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ? = 1 - 1
[[1,2,3],[3,4]]
=> [3,5,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ? = 1 - 1
Description
The vector space dimension of Ext1A(Io,A) when Io is the tilting module corresponding to the permutation o in the Auslander algebra A of K[x]/(xn).
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,2]]
=> [2,2]
=> 1100 => 1
[[1],[2],[4]]
=> [1,1,1]
=> 1110 => 2
[[1],[3],[4]]
=> [1,1,1]
=> 1110 => 2
[[2],[3],[4]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,3]]
=> [2,2]
=> 1100 => 1
[[1,1],[3,3]]
=> [2,2]
=> 1100 => 1
[[1,2],[2,3]]
=> [2,2]
=> 1100 => 1
[[1,2],[3,3]]
=> [2,2]
=> 1100 => 1
[[2,2],[3,3]]
=> [2,2]
=> 1100 => 1
[[1,1],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1,1],[2,2]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,2],[2,2]]
=> [3,2]
=> 10100 => ? = 1
[[1],[2],[5]]
=> [1,1,1]
=> 1110 => 2
[[1],[3],[5]]
=> [1,1,1]
=> 1110 => 2
[[1],[4],[5]]
=> [1,1,1]
=> 1110 => 2
[[2],[3],[5]]
=> [1,1,1]
=> 1110 => 2
[[2],[4],[5]]
=> [1,1,1]
=> 1110 => 2
[[3],[4],[5]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,4]]
=> [2,2]
=> 1100 => 1
[[1,1],[3,4]]
=> [2,2]
=> 1100 => 1
[[1,1],[4,4]]
=> [2,2]
=> 1100 => 1
[[1,2],[2,4]]
=> [2,2]
=> 1100 => 1
[[1,2],[3,4]]
=> [2,2]
=> 1100 => 1
[[1,3],[2,4]]
=> [2,2]
=> 1100 => 1
[[1,2],[4,4]]
=> [2,2]
=> 1100 => 1
[[1,3],[3,4]]
=> [2,2]
=> 1100 => 1
[[1,3],[4,4]]
=> [2,2]
=> 1100 => 1
[[2,2],[3,4]]
=> [2,2]
=> 1100 => 1
[[2,2],[4,4]]
=> [2,2]
=> 1100 => 1
[[2,3],[3,4]]
=> [2,2]
=> 1100 => 1
[[2,3],[4,4]]
=> [2,2]
=> 1100 => 1
[[3,3],[4,4]]
=> [2,2]
=> 1100 => 1
[[1,1],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,4],[2],[3]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,4],[2],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,4],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[2,2],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[2,3],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[2,4],[3],[4]]
=> [2,1,1]
=> 10110 => ? = 2
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> 11110 => ? = 4
[[1,1,1],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,1],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,2],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,3],[2,2]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,2],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,3],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,3],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,2],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,2],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,3],[2,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,2,3],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[2,2,2],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[2,2,3],[3,3]]
=> [3,2]
=> 10100 => ? = 1
[[1,1,1],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,1,2],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,1,3],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,2,2],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,2,3],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,3,3],[2],[3]]
=> [3,1,1]
=> 100110 => ? = 2
[[1,1],[2,2],[3]]
=> [2,2,1]
=> 11010 => ? = 3
[[1,1],[2,3],[3]]
=> [2,2,1]
=> 11010 => ? = 3
[[1,2],[2,3],[3]]
=> [2,2,1]
=> 11010 => ? = 3
[[1,1,1,1],[2,2]]
=> [4,2]
=> 100100 => ? = 1
[[1,1,1,2],[2,2]]
=> [4,2]
=> 100100 => ? = 1
[[1,1,2,2],[2,2]]
=> [4,2]
=> 100100 => ? = 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> 11000 => ? = 1
[[1],[2],[6]]
=> [1,1,1]
=> 1110 => 2
[[1],[3],[6]]
=> [1,1,1]
=> 1110 => 2
[[1],[4],[6]]
=> [1,1,1]
=> 1110 => 2
[[1],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[2],[3],[6]]
=> [1,1,1]
=> 1110 => 2
[[2],[4],[6]]
=> [1,1,1]
=> 1110 => 2
[[2],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[3],[4],[6]]
=> [1,1,1]
=> 1110 => 2
[[3],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[4],[5],[6]]
=> [1,1,1]
=> 1110 => 2
[[1,1],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[3,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[4,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[5,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[3,5]]
=> [2,2]
=> 1100 => 1
[[1,3],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[4,5]]
=> [2,2]
=> 1100 => 1
[[1,4],[2,5]]
=> [2,2]
=> 1100 => 1
[[1,2],[5,5]]
=> [2,2]
=> 1100 => 1
[[1,1],[2],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1],[3],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,1],[4],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[2],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,2],[3],[5]]
=> [2,1,1]
=> 10110 => ? = 2
[[1,3],[2],[5]]
=> [2,1,1]
=> 10110 => ? = 2
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let An=K[x]/(xn). We associate to a nonempty subset S of an (n-1)-set the module MS, which is the direct sum of An-modules with indecomposable non-projective direct summands of dimension i when i is in S (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of MS. We decode the subset as a binary word so that for example the subset S={1,3} of {1,2,3} is decoded as 101.
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001722: Binary words ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1],[2],[4]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[3],[4]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[3],[4]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[3,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[2,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[3,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,2],[3,3]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1,1],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,2],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1],[2],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[3],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[4],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[3],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[4],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[3],[4],[5]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,2],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,2],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,3],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[2,3],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[3,3],[4,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,4],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,4],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[2,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[2,3],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[2,4],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => ? = 4
[[1,1,1],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,1],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,2],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,3],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,2],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,3],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,3],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,2],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,2],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,3],[2,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,2,3],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[2,2,2],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[2,2,3],[3,3]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1
[[1,1,1],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,1,2],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,1,3],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,2,2],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,2,3],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,3,3],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 2
[[1,1],[2,2],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 3
[[1,1],[2,3],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 3
[[1,2],[2,3],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => ? = 3
[[1,1,1,1],[2,2]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1
[[1,1,1,2],[2,2]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1
[[1,1,2,2],[2,2]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1
[[1,1,1],[2,2,2]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => ? = 1
[[1],[2],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[3],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[4],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[3],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[4],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[2],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[3],[4],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[3],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[4],[5],[6]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[1,1],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[3,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[4,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[5,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[3,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,3],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[4,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,4],[2,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,2],[5,5]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 1
[[1,1],[2],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1],[3],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,1],[4],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[2],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,2],[3],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
[[1,3],[2],[5]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => ? = 2
Description
The number of minimal chains with small intervals between a binary word and the top element. A valley in a binary word is a subsequence 01, or a trailing 0. A peak is a subsequence 10 or a trailing 1. Let P be the lattice on binary words of length n, where the covering elements of a word are obtained by replacing a valley with a peak. An interval [w1,w2] in P is small if w2 is obtained from w1 by replacing some valleys with peaks. This statistic counts the number of chains w=w1<<wd=11 to the top element of minimal length. For example, there are two such chains for the word 0110: 0110<1011<1101<1110<1111 and 0110<1010<1101<1110<1111.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001754: Lattices ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,2]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1],[2],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[2,3]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,3],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1],[2],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[3],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[2,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[3,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,1],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,4],[2],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1,4],[3],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[2,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[2,4],[3],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 2 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 4 + 1
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [3,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 1 + 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [5,4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 1 + 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [4,3,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 1 + 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 1 + 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2 + 1
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 1
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 2 + 1
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 1
[[1,2,3],[2],[3]]
=> [4,2,1,3,5] => [2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 2 + 1
[[1,3,3],[2],[3]]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 2 + 1
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
[[1,1],[2,3],[3]]
=> [4,3,5,1,2] => [4,1,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 3 + 1
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => [5,3,1,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 1
[[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => [5,3,1,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,9),(3,9),(4,9),(5,9),(6,7),(7,8),(9,7)],10)
=> ? = 1 + 1
[[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => [3,1,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,7),(6,7),(6,8),(7,9),(8,9),(10,8)],11)
=> ? = 1 + 1
[[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1 + 1
[[1],[2],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[3],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[4],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[3],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[4],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[2],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[3],[4],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[3],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[4],[5],[6]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
[[1,1],[2,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[3,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,1],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[2,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? = 1 + 1
[[1,2],[3,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,4],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[3,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,2],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,3],[4,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[2,3],[5,5]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
Description
The number of tolerances of a finite lattice. Let L be a lattice. A tolerance τ is a reflexive and symmetric relation on L which is compatible with meet and join. Equivalently, a tolerance of L is the image of a congruence by a surjective lattice homomorphism onto L. The number of tolerances of a chain of n elements is the Catalan number \frac{1}{n+1}\binom{2n}{n}, see [2].
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00208: Permutations lattice of intervalsLattices
St001626: Lattices ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,2],[2,3]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,2],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,3],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[1,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[2,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 2
[[2,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[3,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 2
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4 + 2
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 2
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 1 + 2
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 2
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 2
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 2
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2 + 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2 + 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 2
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 2 + 2
[[1,2],[2,4],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1,2],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1,3],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[2,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 3 + 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4 = 2 + 2
Description
The number of maximal proper sublattices of a lattice.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00208: Permutations lattice of intervalsLattices
St001875: Lattices ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 29%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,1],[2,2]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,1],[2,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,2],[2,3]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,2],[3,3]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,1],[2,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,2],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,3],[2,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[1,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,2],[3,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,2],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[2,3],[3,4]]
=> [2,4,1,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 1 + 3
[[2,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[3,3],[4,4]]
=> [3,4,1,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1 + 3
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2 + 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4 + 3
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 3
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 1 + 3
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1 + 3
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1 + 3
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1 + 3
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2 + 3
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2 + 3
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 3
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 3
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1,2],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[2],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,3],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,4],[3],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[2,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[3,4],[4],[5]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 2 + 3
[[1,2],[2,4],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1,2],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1,3],[2,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[2,3],[3,4],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 3 + 3
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 5 = 2 + 3
Description
The number of simple modules with projective dimension at most 1.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00208: Permutations lattice of intervalsLattices
St001624: Lattices ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 14%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,3]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[5],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
Description
The breadth of a lattice. The '''breadth''' of a lattice is the least integer b such that any join x_1\vee x_2\vee\cdots\vee x_n, with n > b, can be expressed as a join over a proper subset of \{x_1,x_2,\ldots,x_n\}.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00208: Permutations lattice of intervalsLattices
St001630: Lattices ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 14%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,3]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[5],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00208: Permutations lattice of intervalsLattices
St001878: Lattices ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 14%
Values
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,3]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[2,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[3,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,2],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[2,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 4
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,1,3],[2,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 1
[[2,2,3],[3,3]]
=> [3,4,1,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 1
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 2
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 2
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 2
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2
[[1],[2],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[6]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[2],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,3],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[3],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[2,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[3,4],[4],[5]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1],[2],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[3],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[4],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[5],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[4],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[5],[6],[7]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
The following 59 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000189The number of elements in the poset. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001857The number of edges in the reduced word graph of a signed permutation. St001926Sparre Andersen's position of the maximum of a signed permutation. St000084The number of subtrees. St000168The number of internal nodes of an ordered tree. St000328The maximum number of child nodes in a tree. St000417The size of the automorphism group of the ordered tree. St000679The pruning number of an ordered tree. St001058The breadth of the ordered tree. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000075The orbit size of a standard tableau under promotion. St000080The rank of the poset. St000166The depth minus 1 of an ordered tree. St000173The segment statistic of a semistandard tableau. St000174The flush statistic of a semistandard tableau. St000181The number of connected components of the Hasse diagram for the poset. St000522The number of 1-protected nodes of a rooted tree. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000782The indicator function of whether a given perfect matching is an L & P matching. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001625The Möbius invariant of a lattice. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St001890The maximum magnitude of the Möbius function of a poset. St000094The depth of an ordered tree. St000116The major index of a semistandard tableau obtained by standardizing. St000327The number of cover relations in a poset. St000413The number of ordered trees with the same underlying unordered tree. St000521The number of distinct subtrees of an ordered tree. St000635The number of strictly order preserving maps of a poset into itself. St000973The length of the boundary of an ordered tree. St000975The length of the boundary minus the length of the trunk of an ordered tree. St001645The pebbling number of a connected graph. St001713The difference of the first and last value in the first row of the Gelfand-Tsetlin pattern. St001877Number of indecomposable injective modules with projective dimension 2. St001964The interval resolution global dimension of a poset. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000415The size of the automorphism group of the rooted tree underlying the ordered tree. St000307The number of rowmotion orbits of a poset. St000104The number of facets in the order polytope of this poset. St000151The number of facets in the chain polytope of the poset. St000400The path length of an ordered tree. St000529The number of permutations whose descent word is the given binary word. St000180The number of chains of a poset. St000416The number of inequivalent increasing trees of an ordered tree. St001168The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St000100The number of linear extensions of a poset. St001909The number of interval-closed sets of a poset. St000410The tree factorial of an ordered tree. St000634The number of endomorphisms of a poset. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral.