searching the database
Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000998
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
St000998: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 3
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 3
[1,1,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 4
[1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> 4
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> 5
Description
Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001880
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Values
[1,0]
=> [.,.]
=> [.,.]
=> ([],1)
=> ? = 2 - 1
[1,0,1,0]
=> [.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 3 - 1
[1,1,0,0]
=> [[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 1
[1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 3 - 1
[1,1,1,0,0,0]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 1
[1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 1
[1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[.,[.,.]]],.]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],.]],.]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],.]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],.]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [[[[.,[.,.]],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 6 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 7 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[.,.],[.,[[[.,.],.],.]]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],[[.,.],.]]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Values
[1,0]
=> [.,.]
=> [.,.]
=> ([],1)
=> ? = 2 - 2
[1,0,1,0]
=> [.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 3 - 2
[1,1,0,0]
=> [[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 2
[1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 3 - 2
[1,1,1,0,0,0]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 2
[1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 2
[1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 2
[1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 2
[1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 2
[1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 2
[1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[.,[.,.]]],.]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],.]],.]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],.]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[1,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],.]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[1,1,1,1,0,1,0,0,0,0]
=> [[[[.,[.,.]],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 - 2
[1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 6 - 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 7 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 6 - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[.,.],[.,[[[.,.],.],.]]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],[[.,.],.]]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001004
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St001004: Permutations ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
St001004: Permutations ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => 2
[1,0,1,0]
=> [3,1,2] => 3
[1,1,0,0]
=> [2,3,1] => 3
[1,0,1,0,1,0]
=> [4,1,2,3] => 4
[1,0,1,1,0,0]
=> [3,1,4,2] => 4
[1,1,0,0,1,0]
=> [2,4,1,3] => 4
[1,1,0,1,0,0]
=> [4,3,1,2] => 3
[1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 5
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 5
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 4
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 5
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 5
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 4
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 4
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 4
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 5
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 4
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 3
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 6
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 6
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 6
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 6
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 6
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 5
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 5
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 5
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 5
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 7
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ? = 6
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 7
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 7
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 7
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 7
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 7
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ? = 6
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 7
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => ? = 6
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 6
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 7
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ? = 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ? = 6
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ? = 5
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ? = 5
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ? = 6
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 7
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 7
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 6
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 6
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 6
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 5
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 5
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ? = 5
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 5
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 7
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 6
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 5
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 4
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 7
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 7
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 7
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => ? = 6
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 7
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 7
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 7
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => ? = 6
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => ? = 6
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ? = 6
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 7
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => ? = 6
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => ? = 5
Description
The number of indices that are either left-to-right maxima or right-to-left minima.
The (bivariate) generating function for this statistic is (essentially) given in [1], the mid points of a $321$ pattern in the permutation are those elements which are neither left-to-right maxima nor a right-to-left minima, see [[St000371]] and [[St000372]].
Matching statistic: St001005
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
St001005: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 71%
St001005: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 71%
Values
[1,0]
=> [2,1] => 2
[1,0,1,0]
=> [3,1,2] => 3
[1,1,0,0]
=> [2,3,1] => 3
[1,0,1,0,1,0]
=> [4,1,2,3] => 4
[1,0,1,1,0,0]
=> [3,1,4,2] => 4
[1,1,0,0,1,0]
=> [2,4,1,3] => 4
[1,1,0,1,0,0]
=> [4,3,1,2] => 3
[1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 5
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 5
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 5
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 4
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 5
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 5
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 5
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 4
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 4
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 4
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 5
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 4
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 3
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 6
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 6
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 6
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 6
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 6
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 5
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 5
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 6
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 5
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 5
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 7
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 7
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 7
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ? = 7
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 7
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ? = 6
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 7
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 7
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 7
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 7
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 7
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ? = 6
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 7
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => ? = 6
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => ? = 6
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 7
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => ? = 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => ? = 6
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => ? = 5
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => ? = 5
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ? = 6
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 7
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 7
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 6
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 6
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 6
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => ? = 5
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 5
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ? = 5
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 5
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 7
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 6
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 5
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 4
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 7
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ? = 7
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 7
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 7
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => ? = 6
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 7
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 7
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 7
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => ? = 6
Description
The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both.
Matching statistic: St000031
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000031: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000031: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [5,4,1,6,3,2] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,7,6,3,8,5,4] => ? = 4 - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [5,4,1,6,3,2,8,7] => ? = 4 - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [7,6,1,5,4,8,3,2] => ? = 4 - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [7,6,5,4,1,8,3,2] => ? = 4 - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [7,6,1,8,5,4,3,2] => ? = 4 - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [6,5,2,1,8,7,4,3] => ? = 3 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,9,8,5,10,7,6] => ? = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,7,6,3,8,5,4,10,9] => ? = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,9,8,3,7,6,10,5,4] => ? = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,9,8,7,6,3,10,5,4] => ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,9,8,3,10,7,6,5,4] => ? = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,8,7,4,3,10,9,6,5] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,9,8,5,10,7,6] => ? = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [5,4,1,6,3,2,8,7,10,9] => ? = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [5,4,1,6,3,2,10,9,8,7] => ? = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [7,6,1,5,4,8,3,2,10,9] => ? = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [9,8,1,5,4,7,6,10,3,2] => ? = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [9,8,7,6,1,5,4,10,3,2] => ? = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [7,6,5,4,1,8,3,2,10,9] => ? = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [9,8,1,7,6,5,4,10,3,2] => ? = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [8,7,4,1,9,6,5,10,3,2] => ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [9,8,7,6,5,4,1,10,3,2] => ? = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [7,6,1,8,5,4,3,2,10,9] => ? = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [9,8,1,7,6,10,5,4,3,2] => ? = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [9,8,7,6,1,10,5,4,3,2] => ? = 5 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [6,5,2,1,8,7,4,3,10,9] => ? = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [9,8,1,6,5,2,10,7,4,3] => ? = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [8,7,2,1,6,5,10,9,4,3] => ? = 4 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [8,7,6,5,2,1,10,9,4,3] => ? = 4 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [9,8,1,10,7,6,5,4,3,2] => ? = 5 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [8,7,2,1,10,9,6,5,4,3] => ? = 4 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [7,6,3,2,1,10,9,8,5,4] => ? = 3 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,11,10,7,12,9,8] => ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,9,8,5,10,7,6,12,11] => ? = 6 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,11,10,5,9,8,12,7,6] => ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,11,10,9,8,5,12,7,6] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,11,10,5,12,9,8,7,6] => ? = 6 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,10,9,6,5,12,11,8,7] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,6,5,4,3,10,9,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,11,10,7,12,9,8] => ? = 6 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,6,5,4,3,12,11,10,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,7,6,3,8,5,4,10,9,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,7,6,3,8,5,4,12,11,10,9] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,9,8,3,7,6,10,5,4,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,11,10,3,7,6,9,8,12,5,4] => ? = 7 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,11,10,9,8,3,7,6,12,5,4] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,9,8,7,6,3,10,5,4,12,11] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,11,10,3,9,8,7,6,12,5,4] => ? = 5 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,10,9,6,3,11,8,7,12,5,4] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,11,10,9,8,7,6,3,12,5,4] => ? = 6 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,8,7,6,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,8,7,6,5,4,3,12,11,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,9,8,3,10,7,6,5,4,12,11] => ? = 6 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,11,10,3,9,8,12,7,6,5,4] => ? = 6 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,10,9,8,7,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 7 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,12,11,10,9,8,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [4,3,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [4,3,2,1,6,5,8,7,12,11,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 7 - 1
Description
The number of cycles in the cycle decomposition of a permutation.
Matching statistic: St000337
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000337: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
St000337: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [5,4,1,6,3,2] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,7,6,3,8,5,4] => ? = 4 - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [5,4,1,6,3,2,8,7] => ? = 4 - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [7,6,1,5,4,8,3,2] => ? = 4 - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [7,6,5,4,1,8,3,2] => ? = 4 - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [7,6,1,8,5,4,3,2] => ? = 4 - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [6,5,2,1,8,7,4,3] => ? = 3 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,9,8,5,10,7,6] => ? = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,7,6,3,8,5,4,10,9] => ? = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,9,8,3,7,6,10,5,4] => ? = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,9,8,7,6,3,10,5,4] => ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,9,8,3,10,7,6,5,4] => ? = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,8,7,4,3,10,9,6,5] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,9,8,5,10,7,6] => ? = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [5,4,1,6,3,2,8,7,10,9] => ? = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [5,4,1,6,3,2,10,9,8,7] => ? = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [7,6,1,5,4,8,3,2,10,9] => ? = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [9,8,1,5,4,7,6,10,3,2] => ? = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [9,8,7,6,1,5,4,10,3,2] => ? = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [7,6,5,4,1,8,3,2,10,9] => ? = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [9,8,1,7,6,5,4,10,3,2] => ? = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [8,7,4,1,9,6,5,10,3,2] => ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [9,8,7,6,5,4,1,10,3,2] => ? = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [7,6,1,8,5,4,3,2,10,9] => ? = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [9,8,1,7,6,10,5,4,3,2] => ? = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [9,8,7,6,1,10,5,4,3,2] => ? = 5 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [6,5,2,1,8,7,4,3,10,9] => ? = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [9,8,1,6,5,2,10,7,4,3] => ? = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [8,7,2,1,6,5,10,9,4,3] => ? = 4 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [8,7,6,5,2,1,10,9,4,3] => ? = 4 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [9,8,1,10,7,6,5,4,3,2] => ? = 5 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [8,7,2,1,10,9,6,5,4,3] => ? = 4 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [7,6,3,2,1,10,9,8,5,4] => ? = 3 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,11,10,7,12,9,8] => ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,9,8,5,10,7,6,12,11] => ? = 6 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,11,10,5,9,8,12,7,6] => ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,11,10,9,8,5,12,7,6] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,11,10,5,12,9,8,7,6] => ? = 6 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,10,9,6,5,12,11,8,7] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,6,5,4,3,10,9,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,11,10,7,12,9,8] => ? = 6 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,6,5,4,3,12,11,10,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,7,6,3,8,5,4,10,9,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,7,6,3,8,5,4,12,11,10,9] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,9,8,3,7,6,10,5,4,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,11,10,3,7,6,9,8,12,5,4] => ? = 7 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,11,10,9,8,3,7,6,12,5,4] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,9,8,7,6,3,10,5,4,12,11] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,11,10,3,9,8,7,6,12,5,4] => ? = 5 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,10,9,6,3,11,8,7,12,5,4] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,11,10,9,8,7,6,3,12,5,4] => ? = 6 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,8,7,6,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,8,7,6,5,4,3,12,11,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,9,8,3,10,7,6,5,4,12,11] => ? = 6 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,11,10,3,9,8,12,7,6,5,4] => ? = 6 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,10,9,8,7,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 7 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,12,11,10,9,8,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [4,3,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [4,3,2,1,6,5,8,7,12,11,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 7 - 1
Description
The lec statistic, the sum of the inversion numbers of the hook factors of a permutation.
For a permutation $\sigma = p \tau_{1} \tau_{2} \cdots \tau_{k}$ in its hook factorization, [1] defines $$ \textrm{lec} \, \sigma = \sum_{1 \leq i \leq k} \textrm{inv} \, \tau_{i} \, ,$$ where $\textrm{inv} \, \tau_{i}$ is the number of inversions of $\tau_{i}$.
Matching statistic: St000703
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000703: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000703: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [2,1,6,5,4,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [4,3,2,1,6,5] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,5,3,4,2,1] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,7,6,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,7,5,6,4,3] => ? = 4 - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [4,3,2,1,8,7,6,5] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? = 4 - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,5,3,7,2,6,4,1] => ? = 4 - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,7,3,6,5,4,2,1] => ? = 4 - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,5,7,4,2,6,3,1] => ? = 4 - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,7,6,4,5,3,2,1] => ? = 3 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => [2,1,10,7,5,9,4,8,6,3] => ? = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => [2,1,10,7,9,6,4,8,5,3] => ? = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => [2,1,10,9,8,6,7,5,4,3] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => [8,5,3,7,2,6,4,1,10,9] => ? = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => [10,5,3,7,2,9,4,8,6,1] => ? = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => [10,5,3,9,2,8,7,6,4,1] => ? = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => [10,7,3,6,9,4,2,8,5,1] => ? = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => [10,9,3,8,6,5,7,4,2,1] => ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => [8,5,7,4,2,6,3,1,10,9] => ? = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => [10,5,7,4,2,9,3,8,6,1] => ? = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => [10,5,9,4,2,8,7,6,3,1] => ? = 5 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => [8,7,6,4,5,3,2,1,10,9] => ? = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => [10,7,6,4,9,3,2,8,5,1] => ? = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 4 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 4 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [5,6,7,9,4,3,2,10,8,1] => [10,7,6,9,5,3,2,8,4,1] => ? = 5 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [5,6,8,9,4,3,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 4 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 3 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,11,12,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,9,10,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,9,11,8,12,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,10,11,12,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,7,8,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,7,8,6,5,11,12,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,7,9,6,10,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? = 6 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,7,9,6,11,8,12,10,5] => [2,1,4,3,12,9,7,11,6,10,8,5] => ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,7,10,6,11,12,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,8,9,10,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,8,9,11,7,6,12,10,5] => [2,1,4,3,12,9,11,8,6,10,7,5] => ? = 6 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,8,10,11,7,12,9,6,5] => [2,1,4,3,12,11,10,8,9,7,6,5] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,9,10,11,12,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,5,6,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,5,6,4,3,8,7,11,12,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,5,6,4,3,9,10,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,5,6,4,3,9,11,8,12,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? = 6 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,5,6,4,3,10,11,12,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,5,7,4,8,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,5,7,4,8,6,3,11,12,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,5,7,4,9,6,10,8,3,12,11] => [2,1,10,7,5,9,4,8,6,3,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,5,7,4,9,6,11,8,12,10,3] => [2,1,12,7,5,9,4,11,6,10,8,3] => ? = 7 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,5,7,4,10,6,11,12,9,8,3] => [2,1,12,7,5,11,4,10,9,8,6,3] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,5,8,4,9,10,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,5,8,4,9,11,7,6,12,10,3] => [2,1,12,9,5,8,11,6,4,10,7,3] => ? = 5 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,5,8,4,10,11,7,12,9,6,3] => [2,1,12,11,5,10,8,7,9,6,4,3] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,5,9,4,10,11,12,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? = 6 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,6,7,8,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,6,7,8,5,4,3,11,12,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,6,7,9,5,4,10,8,3,12,11] => [2,1,10,7,9,6,4,8,5,3,12,11] => ? = 6 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,6,7,9,5,4,11,8,12,10,3] => [2,1,12,7,9,6,4,11,5,10,8,3] => ? = 6 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,7,8,9,10,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 7 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [3,4,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [3,4,2,1,6,5,8,7,11,12,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 7 - 1
Description
The number of deficiencies of a permutation.
This is defined as
$$\operatorname{dec}(\sigma)=\#\{i:\sigma(i) < i\}.$$
The number of exceedances is [[St000155]].
Matching statistic: St000994
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000994: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000994: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [2,1,6,5,4,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [4,3,2,1,6,5] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,5,3,4,2,1] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,7,6,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,5,4,3,8,7] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,7,5,6,4,3] => ? = 4 - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [2,1,8,7,6,5,4,3] => 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [4,3,2,1,8,7,6,5] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? = 4 - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,5,3,7,2,6,4,1] => ? = 4 - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,7,3,6,5,4,2,1] => ? = 4 - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,5,7,4,2,6,3,1] => ? = 4 - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,7,6,4,5,3,2,1] => ? = 3 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => [2,1,4,3,6,5,10,9,8,7] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 5 = 6 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 5 = 6 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => [2,1,6,5,4,3,10,9,8,7] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => [2,1,10,7,5,9,4,8,6,3] => ? = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => [2,1,10,7,9,6,4,8,5,3] => ? = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => [2,1,10,9,8,6,7,5,4,3] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 5 = 6 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => [4,3,2,1,6,5,10,9,8,7] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => [8,5,3,7,2,6,4,1,10,9] => ? = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => [10,5,3,7,2,9,4,8,6,1] => ? = 6 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => [10,5,3,9,2,8,7,6,4,1] => ? = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => [10,7,3,6,9,4,2,8,5,1] => ? = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => [10,9,3,8,6,5,7,4,2,1] => ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => [6,5,4,3,2,1,10,9,8,7] => 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => [8,5,7,4,2,6,3,1,10,9] => ? = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => [10,5,7,4,2,9,3,8,6,1] => ? = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => [10,5,9,4,2,8,7,6,3,1] => ? = 5 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => [8,7,6,4,5,3,2,1,10,9] => ? = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => [10,7,6,4,9,3,2,8,5,1] => ? = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 4 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 4 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [5,6,7,9,4,3,2,10,8,1] => [10,7,6,9,5,3,2,8,4,1] => ? = 5 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [5,6,8,9,4,3,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 4 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 3 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,11,12,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,9,10,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,9,11,8,12,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,10,11,12,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,7,8,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,7,8,6,5,11,12,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 6 = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,7,9,6,10,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? = 6 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,7,9,6,11,8,12,10,5] => [2,1,4,3,12,9,7,11,6,10,8,5] => ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,7,10,6,11,12,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,8,9,10,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 6 = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,8,9,11,7,6,12,10,5] => [2,1,4,3,12,9,11,8,6,10,7,5] => ? = 6 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,8,10,11,7,12,9,6,5] => [2,1,4,3,12,11,10,8,9,7,6,5] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,9,10,11,12,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,5,6,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,5,6,4,3,8,7,11,12,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,5,6,4,3,9,10,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 6 = 7 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,5,6,4,3,9,11,8,12,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? = 6 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,5,6,4,3,10,11,12,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 6 = 7 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,5,7,4,8,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,5,7,4,8,6,3,11,12,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,5,7,4,9,6,10,8,3,12,11] => [2,1,10,7,5,9,4,8,6,3,12,11] => ? = 6 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,5,7,4,9,6,11,8,12,10,3] => [2,1,12,7,5,9,4,11,6,10,8,3] => ? = 7 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,5,7,4,10,6,11,12,9,8,3] => [2,1,12,7,5,11,4,10,9,8,6,3] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,5,8,4,9,10,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? = 6 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,5,8,4,9,11,7,6,12,10,3] => [2,1,12,9,5,8,11,6,4,10,7,3] => ? = 5 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,5,8,4,10,11,7,12,9,6,3] => [2,1,12,11,5,10,8,7,9,6,4,3] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,5,9,4,10,11,12,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? = 6 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,6,7,8,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 6 = 7 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,6,7,8,5,4,3,11,12,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 6 = 7 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,6,7,9,5,4,10,8,3,12,11] => [2,1,10,7,9,6,4,8,5,3,12,11] => ? = 6 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,6,7,9,5,4,11,8,12,10,3] => [2,1,12,7,9,6,4,11,5,10,8,3] => ? = 6 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,7,8,9,10,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 6 = 7 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [3,4,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [3,4,2,1,6,5,8,7,11,12,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 6 = 7 - 1
Description
The number of cycle peaks and the number of cycle valleys of a permutation.
A '''cycle peak''' of a permutation $\pi$ is an index $i$ such that $\pi^{-1}(i) < i > \pi(i)$. Analogously, a '''cycle valley''' is an index $i$ such that $\pi^{-1}(i) > i < \pi(i)$.
Clearly, every cycle of $\pi$ contains as many peaks as valleys.
Matching statistic: St001207
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 43%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 43%
Values
[1,0]
=> []
=> []
=> [1] => ? = 2 - 2
[1,0,1,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 3 - 2
[1,1,0,0]
=> []
=> []
=> [1] => ? = 3 - 2
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 4 - 2
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 4 - 2
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 4 - 2
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 3 - 2
[1,1,1,0,0,0]
=> []
=> []
=> [1] => ? = 4 - 2
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ? = 5 - 2
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ? = 5 - 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ? = 5 - 2
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ? = 4 - 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 3 = 5 - 2
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? = 4 - 2
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 4 - 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 5 - 2
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 4 - 2
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 3 - 2
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [1] => ? = 5 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [8,1,4,5,2,7,3,6] => ? = 6 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => ? = 6 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,8,7,3,6] => ? = 6 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 5 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ? = 6 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [7,1,4,8,2,3,5,6] => ? = 6 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => ? = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,1,2,8,7,3,5,6] => ? = 5 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 5 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ? = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [8,1,2,3,7,4,5,6] => ? = 6 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ? = 4 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ? = 6 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 6 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ? = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 5 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 6 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 5 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ? = 5 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 5 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ? = 6 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ? = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ? = 4 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ? = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 3 = 5 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 6 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ? = 6 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 5 - 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? = 5 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 5 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 4 - 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? = 4 - 2
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 4 - 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 4 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? = 6 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 5 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 4 - 2
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 3 - 2
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [1] => ? = 6 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [10,1,4,6,2,7,9,3,5,8] => ? = 7 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [9,3,5,1,6,8,2,4,7] => ? = 7 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [4,1,2,10,6,7,9,3,5,8] => ? = 7 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [3,1,9,5,6,8,2,4,7] => ? = 6 - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [2,8,4,5,7,1,3,6] => ? = 7 - 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 3 = 5 - 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 5 - 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 4 - 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 4 - 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 5 - 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 4 - 2
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 3 - 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 3 = 5 - 2
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 5 - 2
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 4 - 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 4 - 2
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 5 - 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 4 - 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 3 - 2
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!