Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001032: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1,0]
=> [1,1,0,0]
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 2
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 4
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 4
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 4
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 4
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 4
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4
Description
The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. In other words, this is the number of valleys and peaks whose first step is in odd position, the initial position equal to 1. The generating function is given in [1].
Matching statistic: St001631
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
Mp00013: Binary trees to posetPosets
St001631: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1,0]
=> [.,.]
=> ([],1)
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 0
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
Description
The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset.
Matching statistic: St000696
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000696: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1,0]
=> [1] => [1] => 2 = 0 + 2
[.,[.,.]]
=> [1,1,0,0]
=> [2,1] => [1,2] => 3 = 1 + 2
[[.,.],.]
=> [1,0,1,0]
=> [1,2] => [1,2] => 3 = 1 + 2
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => 2 = 0 + 2
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 4 = 2 + 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => 4 = 2 + 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => 4 = 2 + 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 4 = 2 + 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => 3 = 1 + 2
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => 3 = 1 + 2
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 3 = 1 + 2
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => 3 = 1 + 2
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 5 = 3 + 2
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,4,3] => 3 = 1 + 2
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => 5 = 3 + 2
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => 5 = 3 + 2
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => 5 = 3 + 2
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,3,2,4] => 3 = 1 + 2
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => 5 = 3 + 2
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => 5 = 3 + 2
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => 5 = 3 + 2
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 5 = 3 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,5,2,4,3] => 2 = 0 + 2
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [1,5,2,3,4] => 4 = 2 + 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [1,5,2,3,4] => 4 = 2 + 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [1,5,2,3,4] => 4 = 2 + 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [1,5,2,3,4] => 4 = 2 + 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => 4 = 2 + 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => 4 = 2 + 2
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,3,5,2,4] => 2 = 0 + 2
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => 4 = 2 + 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,4,5,2,3] => 4 = 2 + 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,4,5,2,3] => 4 = 2 + 2
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => 4 = 2 + 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,3,4,5,2] => 4 = 2 + 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 6 = 4 + 2
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,2,5,3,4] => 4 = 2 + 2
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,2,5,3,4] => 4 = 2 + 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,2,3,5,4] => 4 = 2 + 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,4,5,3] => 4 = 2 + 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => 6 = 4 + 2
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,3,5,4] => 4 = 2 + 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => 6 = 4 + 2
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,3,5,4] => 4 = 2 + 2
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => 6 = 4 + 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [1,3,2,4,5] => 4 = 2 + 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => 6 = 4 + 2
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => 6 = 4 + 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => 6 = 4 + 2
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => 6 = 4 + 2
Description
The number of cycles in the breakpoint graph of a permutation. The breakpoint graph of a permutation $\pi_1,\dots,\pi_n$ is the directed, bicoloured graph with vertices $0,\dots,n$, a grey edge from $i$ to $i+1$ and a black edge from $\pi_i$ to $\pi_{i-1}$ for $0\leq i\leq n$, all indices taken modulo $n+1$. This graph decomposes into alternating cycles, which this statistic counts. The distribution of this statistic on permutations of $n-1$ is, according to [cor.1, 5] and [eq.6, 6], given by $$ \frac{1}{n(n+1)}((q+n)_{n+1}-(q)_{n+1}), $$ where $(x)_n=x(x-1)\dots(x-n+1)$.
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
St000385: Binary trees ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1,0]
=> [.,.]
=> ? = 0
[.,[.,.]]
=> [1,1,0,0]
=> [[.,.],.]
=> 1
[[.,.],.]
=> [1,0,1,0]
=> [.,[.,.]]
=> 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> 0
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> 3
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 3
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 3
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [[[.,[.,.]],.],.]
=> 3
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> 3
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 3
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> 0
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 2
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 4
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],.]
=> 4
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 4
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],.]
=> 4
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 4
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> 4
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 4
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> 2
Description
The number of vertices with out-degree 1 in a binary tree. See the references for several connections of this statistic. In particular, the number $T(n,k)$ of binary trees with $n$ vertices and $k$ out-degree $1$ vertices is given by $T(n,k) = 0$ for $n-k$ odd and $$T(n,k)=\frac{2^k}{n+1}\binom{n+1}{k}\binom{n+1-k}{(n-k)/2}$$ for $n-k$ is even.
Matching statistic: St001879
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 67%
Values
[.,.]
=> [1,0]
=> [.,.]
=> ([],1)
=> ? = 0
[.,[.,.]]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 1
[[.,.],.]
=> [1,0,1,0]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[.,[.,[[.,.],.]]],.]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[.,[[[.,.],.],.]],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2
[[[.,.],[[.,.],.]],.]
=> [1,0,1,1,0,1,0,0,1,0]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[.,[[[[.,.],.],.],.]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3
[.,[[[[[.,.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,.],[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[.,.]],[[[.,.],.],.]]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,.],.],[[[.,.],.],.]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[[.,.],.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,.],[.,.]],[[.,.],.]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,[.,.]],.],[[.,.],.]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[.,.],.],.],[[.,.],.]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[[[.,.],.],.]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,.],[[.,.],.]],[.,.]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[.,.],.],[.,.]],[.,.]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,[[.,.],.]],.],[.,.]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[.,.],[.,.]],.],[.,.]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[.,[.,.]],.],.],[.,.]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[[.,.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[.,[[[[.,.],.],.],.]],.]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,.],[[[.,.],.],.]],.]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,[.,.]],[[.,.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[.,.],.],[[.,.],.]],.]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[.,[[.,.],.]],[.,.]],.]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[[[[.,.],[.,.]],[.,.]],.]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
Mp00013: Binary trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 67%
Values
[.,.]
=> [1,0]
=> [.,.]
=> ([],1)
=> ? = 0 + 1
[.,[.,.]]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 1
[[.,.],.]
=> [1,0,1,0]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 1 + 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 1
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 1
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[.,[.,[[.,.],.]]],.]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[.,[[.,[.,.]],.]],.]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[.,[[[.,.],.],.]],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 2 + 1
[[[.,.],[[.,.],.]],.]
=> [1,0,1,1,0,1,0,0,1,0]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 1 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 1 + 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[.,[[[[[.,.],.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,.],[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[.,.]],[[[.,.],.],.]]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,.],.],[[[.,.],.],.]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[[.,.],.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,.],[.,.]],[[.,.],.]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,[.,.]],.],[[.,.],.]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[.,.],.],.],[[.,.],.]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[[[.,.],.],.]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,.],[[.,.],.]],[.,.]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,[.,.]],[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[.,.],.],[.,.]],[.,.]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,[[.,.],.]],.],[.,.]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[.,.],[.,.]],.],[.,.]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[.,[.,.]],.],.],[.,.]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[[.,.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,[[[[.,.],.],.],.]],.]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,.],[[[.,.],.],.]],.]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,[.,.]],[[.,.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[.,.],.],[[.,.],.]],.]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[.,[[.,.],.]],[.,.]],.]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[[[.,.],[.,.]],[.,.]],.]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000031
Mp00008: Binary trees to complete treeOrdered trees
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
St000031: Permutations ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [[],[]]
=> [.,[.,.]]
=> [2,1] => 1 = 0 + 1
[.,[.,.]]
=> [[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 2 = 1 + 1
[[.,.],.]
=> [[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => 2 = 1 + 1
[.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> [4,3,5,2,6,1] => 1 = 0 + 1
[.,[[.,.],.]]
=> [[],[[[],[]],[]]]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => 3 = 2 + 1
[[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => 3 = 2 + 1
[[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,6,5] => 3 = 2 + 1
[[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> [2,1,4,3,6,5] => 3 = 2 + 1
[.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [5,4,6,3,7,2,8,1] => 2 = 1 + 1
[.,[.,[[.,.],.]]]
=> [[],[[],[[[],[]],[]]]]
=> [.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [4,3,6,5,7,2,8,1] => 2 = 1 + 1
[.,[[.,.],[.,.]]]
=> [[],[[[],[]],[[],[]]]]
=> [.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [3,2,6,5,7,4,8,1] => 2 = 1 + 1
[.,[[.,[.,.]],.]]
=> [[],[[[],[[],[]]],[]]]
=> [.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [4,3,5,2,7,6,8,1] => 2 = 1 + 1
[.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> [.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [3,2,5,4,7,6,8,1] => 4 = 3 + 1
[[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> [[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [2,1,6,5,7,4,8,3] => 2 = 1 + 1
[[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> [[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [2,1,5,4,7,6,8,3] => 4 = 3 + 1
[[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> [[.,[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [3,2,4,1,7,6,8,5] => 4 = 3 + 1
[[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> [[[.,[.,.]],[.,.]],[[.,[.,.]],.]]
=> [2,1,4,3,7,6,8,5] => 4 = 3 + 1
[[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [4,3,5,2,6,1,8,7] => 2 = 1 + 1
[[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [3,2,5,4,6,1,8,7] => 4 = 3 + 1
[[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[.,.]]
=> [2,1,5,4,6,3,8,7] => 4 = 3 + 1
[[[.,[.,.]],.],.]
=> [[[[],[[],[]]],[]],[]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[.,.]]
=> [3,2,4,1,6,5,8,7] => 4 = 3 + 1
[[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [2,1,4,3,6,5,8,7] => 4 = 3 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> [.,[[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],.]]
=> [6,5,7,4,8,3,9,2,10,1] => ? = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [[],[[],[[],[[[],[]],[]]]]]
=> [.,[[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],.]]
=> [5,4,7,6,8,3,9,2,10,1] => ? = 2 + 1
[.,[.,[[.,.],[.,.]]]]
=> [[],[[],[[[],[]],[[],[]]]]]
=> [.,[[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],.]]
=> [4,3,7,6,8,5,9,2,10,1] => ? = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> [[],[[],[[[],[[],[]]],[]]]]
=> [.,[[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],.]]
=> [5,4,6,3,8,7,9,2,10,1] => ? = 2 + 1
[.,[.,[[[.,.],.],.]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> [.,[[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],.]]
=> [4,3,6,5,8,7,9,2,10,1] => ? = 2 + 1
[.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> [.,[[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],.]]
=> [3,2,7,6,8,5,9,4,10,1] => ? = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> [.,[[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],.]]
=> [3,2,6,5,8,7,9,4,10,1] => ? = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> [.,[[[.,[[.,[.,.]],.]],[[.,[.,.]],.]],.]]
=> [4,3,5,2,8,7,9,6,10,1] => ? = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> [.,[[[[.,[.,.]],[.,.]],[[.,[.,.]],.]],.]]
=> [3,2,5,4,8,7,9,6,10,1] => ? = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> [.,[[[.,[[.,[[.,[.,.]],.]],.]],[.,.]],.]]
=> [5,4,6,3,7,2,9,8,10,1] => ? = 2 + 1
[.,[[.,[[.,.],.]],.]]
=> [[],[[[],[[[],[]],[]]],[]]]
=> [.,[[[.,[[[.,[.,.]],[.,.]],.]],[.,.]],.]]
=> [4,3,6,5,7,2,9,8,10,1] => ? = 2 + 1
[.,[[[.,.],[.,.]],.]]
=> [[],[[[[],[]],[[],[]]],[]]]
=> [.,[[[[.,[.,.]],[[.,[.,.]],.]],[.,.]],.]]
=> [3,2,6,5,7,4,9,8,10,1] => ? = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> [[],[[[[],[[],[]]],[]],[]]]
=> [.,[[[[.,[[.,[.,.]],.]],[.,.]],[.,.]],.]]
=> [4,3,5,2,7,6,9,8,10,1] => ? = 2 + 1
[.,[[[[.,.],.],.],.]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> [.,[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],.]]
=> [3,2,5,4,7,6,9,8,10,1] => ? = 4 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> [[.,[.,.]],[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [2,1,7,6,8,5,9,4,10,3] => ? = 2 + 1
[[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> [[.,[.,.]],[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [2,1,6,5,8,7,9,4,10,3] => ? = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> [[.,[.,.]],[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [2,1,5,4,8,7,9,6,10,3] => ? = 2 + 1
[[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> [[.,[.,.]],[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [2,1,6,5,7,4,9,8,10,3] => ? = 2 + 1
[[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> [[.,[.,.]],[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [2,1,5,4,7,6,9,8,10,3] => ? = 4 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> [[.,[[.,[.,.]],.]],[[.,[[.,[.,.]],.]],.]]
=> [3,2,4,1,8,7,9,6,10,5] => ? = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> [[.,[[.,[.,.]],.]],[[[.,[.,.]],[.,.]],.]]
=> [3,2,4,1,7,6,9,8,10,5] => ? = 4 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> [[[.,[.,.]],[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [2,1,4,3,8,7,9,6,10,5] => ? = 2 + 1
[[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> [[[.,[.,.]],[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [2,1,4,3,7,6,9,8,10,5] => ? = 4 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[[.,[.,.]],.]]
=> [4,3,5,2,6,1,9,8,10,7] => ? = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[[.,[.,.]],.]]
=> [3,2,5,4,6,1,9,8,10,7] => ? = 4 + 1
[[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3,9,8,10,7] => ? = 4 + 1
[[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[[.,[.,.]],.]]
=> [3,2,4,1,6,5,9,8,10,7] => ? = 4 + 1
[[[[.,.],.],.],[.,.]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[[.,[.,.]],.]]
=> [2,1,4,3,6,5,9,8,10,7] => ? = 4 + 1
[[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> [[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],[.,.]]
=> [5,4,6,3,7,2,8,1,10,9] => ? = 2 + 1
[[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> [[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],[.,.]]
=> [4,3,6,5,7,2,8,1,10,9] => ? = 2 + 1
[[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> [[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],[.,.]]
=> [3,2,6,5,7,4,8,1,10,9] => ? = 2 + 1
[[.,[[.,[.,.]],.]],.]
=> [[[],[[[],[[],[]]],[]]],[]]
=> [[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],[.,.]]
=> [4,3,5,2,7,6,8,1,10,9] => ? = 2 + 1
[[.,[[[.,.],.],.]],.]
=> [[[],[[[[],[]],[]],[]]],[]]
=> [[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],[.,.]]
=> [3,2,5,4,7,6,8,1,10,9] => ? = 4 + 1
[[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> [[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [2,1,6,5,7,4,8,3,10,9] => ? = 2 + 1
[[[.,.],[[.,.],.]],.]
=> [[[[],[]],[[[],[]],[]]],[]]
=> [[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [2,1,5,4,7,6,8,3,10,9] => ? = 4 + 1
[[[.,[.,.]],[.,.]],.]
=> [[[[],[[],[]]],[[],[]]],[]]
=> [[[.,[[.,[.,.]],.]],[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,7,6,8,5,10,9] => ? = 4 + 1
[[[[.,.],.],[.,.]],.]
=> [[[[[],[]],[]],[[],[]]],[]]
=> [[[[.,[.,.]],[.,.]],[[.,[.,.]],.]],[.,.]]
=> [2,1,4,3,7,6,8,5,10,9] => ? = 4 + 1
[[[.,[.,[.,.]]],.],.]
=> [[[[],[[],[[],[]]]],[]],[]]
=> [[[.,[[.,[[.,[.,.]],.]],.]],[.,.]],[.,.]]
=> [4,3,5,2,6,1,8,7,10,9] => ? = 2 + 1
[[[.,[[.,.],.]],.],.]
=> [[[[],[[[],[]],[]]],[]],[]]
=> [[[.,[[[.,[.,.]],[.,.]],.]],[.,.]],[.,.]]
=> [3,2,5,4,6,1,8,7,10,9] => ? = 4 + 1
[[[[.,.],[.,.]],.],.]
=> [[[[[],[]],[[],[]]],[]],[]]
=> [[[[.,[.,.]],[[.,[.,.]],.]],[.,.]],[.,.]]
=> [2,1,5,4,6,3,8,7,10,9] => ? = 4 + 1
[[[[.,[.,.]],.],.],.]
=> [[[[[],[[],[]]],[]],[]],[]]
=> [[[[.,[[.,[.,.]],.]],[.,.]],[.,.]],[.,.]]
=> [3,2,4,1,6,5,8,7,10,9] => ? = 4 + 1
[[[[[.,.],.],.],.],.]
=> [[[[[[],[]],[]],[]],[]],[]]
=> [[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],[.,.]]
=> [2,1,4,3,6,5,8,7,10,9] => 5 = 4 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [[],[[],[[],[[],[[],[[],[]]]]]]]
=> [.,[[.,[[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],.]],.]]
=> [7,6,8,5,9,4,10,3,11,2,12,1] => ? = 1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [[],[[],[[],[[],[[[],[]],[]]]]]]
=> [.,[[.,[[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],.]],.]]
=> [6,5,8,7,9,4,10,3,11,2,12,1] => ? = 1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [[],[[],[[],[[[],[]],[[],[]]]]]]
=> [.,[[.,[[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],.]],.]]
=> [5,4,8,7,9,6,10,3,11,2,12,1] => ? = 1 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [[],[[],[[],[[[],[[],[]]],[]]]]]
=> [.,[[.,[[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],.]],.]]
=> [6,5,7,4,9,8,10,3,11,2,12,1] => ? = 1 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [[],[[],[[],[[[[],[]],[]],[]]]]]
=> [.,[[.,[[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],.]],.]]
=> [5,4,7,6,9,8,10,3,11,2,12,1] => ? = 3 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [[],[[],[[[],[]],[[],[[],[]]]]]]
=> [.,[[.,[[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],.]],.]]
=> [4,3,8,7,9,6,10,5,11,2,12,1] => ? = 1 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [[],[[],[[[],[]],[[[],[]],[]]]]]
=> [.,[[.,[[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],.]],.]]
=> [4,3,7,6,9,8,10,5,11,2,12,1] => ? = 3 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [[],[[],[[[],[[],[]]],[[],[]]]]]
=> [.,[[.,[[[.,[[.,[.,.]],.]],[[.,[.,.]],.]],.]],.]]
=> [5,4,6,3,9,8,10,7,11,2,12,1] => ? = 3 + 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [[],[[],[[[[],[]],[]],[[],[]]]]]
=> [.,[[.,[[[[.,[.,.]],[.,.]],[[.,[.,.]],.]],.]],.]]
=> [4,3,6,5,9,8,10,7,11,2,12,1] => ? = 3 + 1
[[[[[[.,.],.],.],.],.],.]
=> [[[[[[[],[]],[]],[]],[]],[]],[]]
=> [[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],[.,.]],[.,.]]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 5 + 1
Description
The number of cycles in the cycle decomposition of a permutation.
Matching statistic: St001875
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
St001875: Lattices ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 83%
Values
[.,.]
=> [1] => ([],1)
=> ([(0,1)],2)
=> ? = 0 + 2
[.,[.,.]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[[.,.],.]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 2
[.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4 = 2 + 2
[[.,.],[.,.]]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4 = 2 + 2
[[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 2 + 2
[[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1 + 2
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 1 + 2
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 1 + 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3 + 2
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 1 + 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 5 = 3 + 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 5 = 3 + 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 5 = 3 + 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 1 + 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 5 = 3 + 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 5 = 3 + 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5 = 3 + 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> ?
=> ? = 0 + 2
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ?
=> ? = 2 + 2
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? = 2 + 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 2 + 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ? = 2 + 2
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ? = 2 + 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ? = 2 + 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ? = 0 + 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ? = 2 + 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 2 + 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,1),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8)],14)
=> ? = 2 + 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ? = 2 + 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ? = 2 + 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 4 + 2
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 2 + 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 2 + 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 2
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 2 + 2
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 4 + 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? = 2 + 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 4 + 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 4 + 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ? = 2 + 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 4 + 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 4 + 2
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 4 + 2
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 6 = 4 + 2
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2 + 2
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 2 + 2
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ? = 2 + 2
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2 + 2
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4 + 2
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 2 + 2
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 + 2
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 4 + 2
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 6 = 4 + 2
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 2 + 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 + 2
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 6 = 4 + 2
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 6 = 4 + 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([],6)
=> ?
=> ? = 1 + 2
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(4,5)],6)
=> ?
=> ? = 1 + 2
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(3,4),(3,5)],6)
=> ?
=> ? = 1 + 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(3,5),(4,5)],6)
=> ?
=> ? = 1 + 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
Description
The number of simple modules with projective dimension at most 1.