Your data matches 15 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001125
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001125: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 0
Description
The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra.
Matching statistic: St001230
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001230: Dyck paths ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 0
Description
The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property.
Matching statistic: St001827
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00157: Graphs connected complementGraphs
St001827: Graphs ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,6),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(1,4),(1,9),(2,3),(2,8),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 0
Description
The number of two-component spanning forests of a graph. A '''spanning subgraph''' is a subgraph which contains all vertices of the ambient graph. A '''forest''' is a graph which contains no cycles, and has any number of connected components. A '''two-component spanning forest''' is a spanning subgraph which contains no cycles and has two connected components.
Matching statistic: St001241
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001241: Dyck paths ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 0 + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 0 + 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 0 + 1
Description
The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one.
Matching statistic: St000212
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000212: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 0
Description
The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. Summing over all partitions of $n$ yields the sequence $$1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, \dots$$ which is [[oeis:A237770]]. The references in this sequence of the OEIS indicate a connection with Baxter permutations.
Matching statistic: St000512
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000512: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 0
Description
The number of invariant subsets of size 3 when acting with a permutation of given cycle type.
Matching statistic: St001097
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St001097: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 0
Description
The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1]. This statistic records the coefficient of the monomial symmetric function $m_\lambda$ in the formal group law for linear orders, with generating function $f(x) = x/(1-x)$, see [1, sec. 3.4]. This statistic gives the number of Smirnov arrangements of a set of letters with $\lambda_i$ of the $i$th letter, where a Smirnov word is a word with no repeated adjacent letters. e.g., [3,2,1] = > 10 since there are 10 Smirnov rearrangements of the word 'aaabbc': 'ababac', 'ababca', 'abacab', 'abacba', 'abcaba', 'acabab', 'acbaba', 'babaca', 'bacaba', 'cababa'.
Matching statistic: St001632
Mp00148: Finite Cartan types to root posetPosets
Mp00125: Posets dual posetPosets
St001632: Posets ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ? = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2 = 1 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 1 = 0 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> 1 = 0 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 2 = 1 + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,6),(3,8),(4,5),(4,8),(5,1),(5,7),(6,3),(6,4),(8,2),(8,7)],9)
=> ? = 0 + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,6),(3,8),(4,5),(4,8),(5,1),(5,7),(6,3),(6,4),(8,2),(8,7)],9)
=> ? = 0 + 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,5),(0,6),(3,2),(3,8),(4,1),(4,9),(5,3),(5,7),(6,4),(6,7),(7,8),(7,9)],10)
=> ? = 0 + 1
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Matching statistic: St000835
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000835: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? = 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? = 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? = 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> [6,6,5,5,5,3,3,3,3,3]
=> ? = 0
Description
The minimal difference in size when partitioning the integer partition into two subpartitions. This is the optimal value of the optimisation version of the partition problem [1].
Matching statistic: St000992
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000992: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 0
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 0
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? = 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? = 0
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? = 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> [6,6,5,5,5,3,3,3,3,3]
=> ? = 0
Description
The alternating sum of the parts of an integer partition. For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
The following 5 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001055The Grundy value for the game of removing cells of a row in an integer partition. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers.