Your data matches 25 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001254: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> 6
[1,1,1,0,0,0,1,0]
=> 7
[1,1,1,0,0,1,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> 7
[1,1,1,1,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> 8
[1,0,1,1,1,1,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> 7
[1,1,0,0,1,1,1,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> 7
[1,1,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,0,1,0,0,0]
=> 7
[1,1,0,1,1,1,0,0,0,0]
=> 9
Description
The vector space dimension of the first extension-group between A/soc(A) and J when A is the corresponding Nakayama algebra with Jacobson radical J.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001228: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 2
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 6
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 7
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 8
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 9
Description
The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00010: Binary trees to ordered tree: left child = left brotherOrdered trees
St000400: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [[]]
=> 1
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [[],[]]
=> 2
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [[[]]]
=> 3
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [[],[],[]]
=> 3
[1,0,1,1,0,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [[[]],[]]
=> 4
[1,1,0,0,1,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [[],[[]]]
=> 4
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [[],[[]]]
=> 4
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[[[]]]]
=> 6
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [[],[],[],[]]
=> 4
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> 5
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 5
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 5
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> 7
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 5
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 6
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 5
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 6
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 7
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 7
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [[],[],[],[],[]]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> [[[]],[],[],[]]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> [[],[[]],[],[]]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> [[],[[]],[],[]]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> [[[[]]],[],[]]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,[.,.]],[.,.]],.]
=> [[[]],[[]],[]]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,[.,.]],[.,.]],.]
=> [[[]],[[]],[]]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 8
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [[[[[]]]],[]]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 7
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 7
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 7
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 7
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 9
Description
The path length of an ordered tree. This is the sum of the lengths of all paths from the root to a node, see Section 2.3.4.5 of [1].
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000984: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
Description
The number of boxes below precisely one peak. Imagine that each peak of the Dyck path, drawn with north and east steps, casts a shadow onto the triangular region between it and the diagonal. This statistic is the number of cells which are in the shade of precisely one peak.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001019: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 1
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 2
[1,1,0,0]
=> [2] => [1,1] => [1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 6
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 7
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 8
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 9
Description
Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001295
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001295: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 11
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 7
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 9
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St001003: Dyck paths ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 4 = 1 + 3
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 5 = 2 + 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 6 = 3 + 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 6 = 3 + 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 7 = 4 + 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 7 = 4 + 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 7 = 4 + 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 9 = 6 + 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 7 = 4 + 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 8 = 5 + 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 8 = 5 + 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 8 = 5 + 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 10 = 7 + 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8 = 5 + 3
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 9 = 6 + 3
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 8 = 5 + 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 8 = 5 + 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 9 = 6 + 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 10 = 7 + 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 10 = 7 + 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 10 = 7 + 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 13 = 10 + 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 6 + 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 + 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 6 + 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 8 + 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6 + 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 7 + 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 6 + 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 6 + 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 7 + 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 8 + 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 8 + 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 8 + 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 11 + 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 + 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 7 + 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 7 + 3
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 7 + 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 9 + 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 6 + 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 7 + 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 6 + 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 6 + 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 7 + 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 7 + 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 7 + 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 7 + 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 9 + 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 8 + 3
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 9 + 3
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 8 + 3
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 8 + 3
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 9 + 3
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 8 + 3
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 8 + 3
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 8 + 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 9 + 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 11 + 3
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 11 + 3
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 11 + 3
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 11 + 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 15 + 3
Description
The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00318: Graphs dual on componentsGraphs
St001645: Graphs ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0]
=> [2] => ([],2)
=> ([],2)
=> ? = 3
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 4
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4
[1,1,0,1,0,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],3)
=> ? = 6
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 5
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 5
[1,0,1,1,0,1,0,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 5
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 7
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 5
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 6
[1,1,0,1,0,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 5
[1,1,0,1,1,0,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 6
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 7
[1,1,1,0,0,1,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 7
[1,1,1,0,1,0,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 7
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? = 10
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 11
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 9
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 9
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 9
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,1,1,0,0,1,1,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 9
[1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 8
[1,1,1,0,1,1,0,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 9
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 11
[1,1,1,1,0,0,0,1,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 11
Description
The pebbling number of a connected graph.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St001874: Permutations ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 42%
Values
[1,0]
=> [(1,2)]
=> [2,1] => 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => 3
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 3
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 4
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 4
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => 4
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => 6
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => ? = 4
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 5
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 5
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 5
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 7
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 5
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => ? = 6
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 5
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => ? = 5
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => ? = 6
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 7
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => ? = 7
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => ? = 7
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => ? = 10
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => ? = 5
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => ? = 6
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 6
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 6
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 8
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => ? = 6
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => ? = 7
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 6
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 6
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 7
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 8
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 8
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 8
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 11
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => ? = 6
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => ? = 7
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 7
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 7
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 9
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => ? = 6
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 7
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 6
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => ? = 6
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => ? = 7
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 7
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => ? = 7
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => ? = 7
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => ? = 9
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 8
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 9
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 8
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => ? = 8
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => ? = 9
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 8
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => ? = 8
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => ? = 8
Description
Lusztig's a-function for the symmetric group. Let $x$ be a permutation corresponding to the pair of tableaux $(P(x),Q(x))$ by the Robinson-Schensted correspondence and $\operatorname{shape}(Q(x)')=( \lambda_1,...,\lambda_k)$ where $Q(x)'$ is the transposed tableau. Then $a(x)=\sum\limits_{i=1}^{k}{\binom{\lambda_i}{2}}$. See exercise 10 on page 198 in the book by Björner and Brenti "Combinatorics of Coxeter Groups" for equivalent characterisations and properties.
The following 15 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000055The inversion sum of a permutation. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000809The reduced reflection length of the permutation. St001412Number of minimal entries in the Bruhat order matrix of a permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001821The sorting index of a signed permutation. St001388The number of non-attacking neighbors of a permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000539The number of odd inversions of a permutation. St001875The number of simple modules with projective dimension at most 1. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001812The biclique partition number of a graph.