searching the database
Your data matches 59 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001755
St001755: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1 = 0 + 1
['A',2]
=> 1 = 0 + 1
['B',2]
=> 3 = 2 + 1
['A',3]
=> 1 = 0 + 1
['A',4]
=> 1 = 0 + 1
Description
The number of pairwise different full-rank reflection subgroups of the associated Weyl group.
Let $\mathcal{R} \subseteq W$ be the set of reflections in the Weyl group $W$.
A (possibly empty) subset $X \subseteq \mathcal{R}$ generates a subgroup of $W$ that is again a reflection group. This is the number of all pairwise different full-rank subgroups of $W$ obtained this way.
If $\Phi^+$ is an associated set of positive roots, then this also is the number of subsets $Y \subseteq \Phi^+$ such that $Y$ is a simple system of some type and $|Y| = n$, where $n$ is the rank of $W$.
For example the group of type $B_2$ has two different subgroups of type $A_1 \times A_1$ and itself as full-rank reflection subgroups.
Matching statistic: St001392
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> 0
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Matching statistic: St001914
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001914: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St001914: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3 = 2 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 1 = 0 + 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> 1 = 0 + 1
Description
The size of the orbit of an integer partition in Bulgarian solitaire.
Bulgarian solitaire is the dynamical system where a move consists of removing the first column of the Ferrers diagram and inserting it as a row.
This statistic returns the number of partitions that can be obtained from the given partition.
Matching statistic: St000012
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$.
2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St000175
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,3]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [5,5]
=> 0
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape.
Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial
$$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$
The statistic of the degree of this polynomial.
For example, the partition $(3, 2, 1, 1, 1)$ gives
$$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$
which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$.
This is the same as the number of unordered pairs of different parts, which follows from:
$$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Matching statistic: St000329
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000329: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000329: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
Matching statistic: St000340
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
Description
The number of non-final maximal constant sub-paths of length greater than one.
This is the total number of occurrences of the patterns $110$ and $001$.
Matching statistic: St000377
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000377: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000377: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [4,3,2,1]
=> 0
Description
The dinv defect of an integer partition.
This is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \not\in \{0,1\}$.
Matching statistic: St000394
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000394: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000394: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Matching statistic: St000513
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000513: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000513: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [5,1]
=> 0
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [7,3]
=> 0
Description
The number of invariant subsets of size 2 when acting with a permutation of given cycle type.
The following 49 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000769The major index of a composition regarded as a word. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000984The number of boxes below precisely one peak. St000995The largest even part of an integer partition. St001104The number of descents of the invariant in a tensor power of the adjoint representation of the rank two general linear group. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001248Sum of the even parts of a partition. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001413Half the length of the longest even length palindromic prefix of a binary word. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000026The position of the first return of a Dyck path. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St000509The diagonal index (content) of a partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000089The absolute variation of a composition. St001783The number of odd automorphisms of a graph. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000763The sum of the positions of the strong records of an integer composition. St000767The number of runs in an integer composition. St000820The number of compositions obtained by rotating the composition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001694The number of maximal dissociation sets in a graph. St001739The number of graphs with the same edge polytope as the given graph. St000244The cardinality of the automorphism group of a graph. St000981The length of the longest zigzag subpath. St000547The number of even non-empty partial sums of an integer partition. St000618The number of self-evacuating tableaux of given shape. St001571The Cartan determinant of the integer partition. St001710The number of permutations such that conjugation with a permutation of given cycle type yields the inverse permutation. St001623The number of doubly irreducible elements of a lattice. St001386The number of prime labellings of a graph. St000706The product of the factorials of the multiplicities of an integer partition. St000811The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to Schur symmetric functions. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!