Your data matches 246 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000511
Mp00184: Integer compositions to threshold graphGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St000511: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> []
=> 1
[1,1] => ([(0,1)],2)
=> [1]
=> 2
[2] => ([],2)
=> []
=> 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
[1,2] => ([(1,2)],3)
=> [1]
=> 2
[2,1] => ([(0,2),(1,2)],3)
=> [1,1]
=> 4
[3] => ([],3)
=> []
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 2
[1,3] => ([(2,3)],4)
=> [1]
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> [1,1]
=> 4
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 8
[4] => ([],4)
=> []
=> 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 2
[1,4] => ([(3,4)],5)
=> [1]
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> [1,1]
=> 4
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 8
[5] => ([],5)
=> []
=> 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 2
[1,5] => ([(4,5)],6)
=> [1]
=> 2
[2,4] => ([(3,5),(4,5)],6)
=> [1,1]
=> 4
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 8
[6] => ([],6)
=> []
=> 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3]
=> 2
[1,6] => ([(5,6)],7)
=> [1]
=> 2
[2,5] => ([(4,6),(5,6)],7)
=> [1,1]
=> 4
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [1,1,1]
=> 8
[7] => ([],7)
=> []
=> 1
Description
The number of invariant subsets when acting with a permutation of given cycle type.
Matching statistic: St001616
Mp00184: Integer compositions to threshold graphGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001616: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[2] => ([],2)
=> ([],1)
=> 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 2
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3] => ([],3)
=> ([],1)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
[4] => ([],4)
=> ([],1)
=> 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
[5] => ([],5)
=> ([],1)
=> 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,5] => ([(4,5)],6)
=> ([(0,1)],2)
=> 2
[2,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
[6] => ([],6)
=> ([],1)
=> 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,6] => ([(5,6)],7)
=> ([(0,1)],2)
=> 2
[2,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
[7] => ([],7)
=> ([],1)
=> 1
Description
The number of neutral elements in a lattice. An element $e$ of the lattice $L$ is neutral if the sublattice generated by $e$, $x$ and $y$ is distributive for all $x, y \in L$.
Matching statistic: St000038
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000038: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 4
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 8
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 8
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 4
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 8
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 2
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> 4
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> 8
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
Description
The product of the heights of the descending steps of a Dyck path. A Dyck path with 2n letters defines a partition inside an [n] x [n] board. This statistic counts the number of placements of n non-attacking rooks on the board. By the Gessel-Viennot theory of orthogonal polynomials this corresponds to the 0-moment of the Hermite polynomials. Summing the values of the statistic over all Dyck paths of fixed size n the number of perfect matchings (2n+1)!! is obtained: up steps are openers, down steps closers and the rooks determine a pairing of openers and closers.
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000040: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 1
[1,1] => [1,0,1,0]
=> [2,1] => [2,1] => 2
[2] => [1,1,0,0]
=> [1,2] => [1,2] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => [1,3,2] => 2
[1,2] => [1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 2
[2,1] => [1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 4
[3] => [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,3,2,4] => 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1,2,4] => 4
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,1,2,3] => 8
[4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,3,2,4,5] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 4
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 8
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => [1,3,2,4,5,6] => 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 4
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 8
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [1,3,2,4,5,6,7] => 2
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => 2
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => 4
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => 8
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 1
Description
The number of regions of the inversion arrangement of a permutation. The inversion arrangement $\mathcal{A}_w$ consists of the hyperplanes $x_i-x_j=0$ such that $(i,j)$ is an inversion of $w$. Postnikov [4] conjectured that the number of regions in $\mathcal{A}_w$ equals the number of permutations in the interval $[id,w]$ in the strong Bruhat order if and only if $w$ avoids $4231$, $35142$, $42513$, $351624$. This conjecture was proved by Hultman-Linusson-Shareshian-Sjöstrand [1]. Oh-Postnikov-Yoo [3] showed that the number of regions of $\mathcal{A}_w$ is $|\chi_{G_w}(-1)|$ where $\chi_{G_w}$ is the chromatic polynomial of the inversion graph $G_w$. This is the graph with vertices ${1,2,\ldots,n}$ and edges $(i,j)$ for $i\lneq j$ $w_i\gneq w_j$. For a permutation $w=w_1\cdots w_n$, Lewis-Morales [2] and Hultman (see appendix in [2]) showed that this number equals the number of placements of $n$ non-attacking rooks on the south-west Rothe diagram of $w$.
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000418: Dyck paths ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 4
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 8
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 8
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 4
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 8
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 2
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> 4
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> 8
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
Description
The number of Dyck paths that are weakly below a Dyck path.
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000421: Dyck paths ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> ? = 1 - 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1 = 2 - 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 4 - 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 7 = 8 - 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 7 = 8 - 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 7 = 8 - 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> 7 = 8 - 1
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
Description
The number of Dyck paths that are weakly below a Dyck path, except for the path itself.
Matching statistic: St001754
Mp00184: Integer compositions to threshold graphGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001754: Lattices ⟶ ℤResult quality: 75% values known / values provided: 85%distinct values known / distinct values provided: 75%
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[2] => ([],2)
=> ([],1)
=> 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 2
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3] => ([],3)
=> ([],1)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 8
[4] => ([],4)
=> ([],1)
=> 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 8
[5] => ([],5)
=> ([],1)
=> 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,5] => ([(4,5)],6)
=> ([(0,1)],2)
=> 2
[2,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 8
[6] => ([],6)
=> ([],1)
=> 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,6] => ([(5,6)],7)
=> ([(0,1)],2)
=> 2
[2,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 8
[7] => ([],7)
=> ([],1)
=> 1
Description
The number of tolerances of a finite lattice. Let $L$ be a lattice. A tolerance $\tau$ is a reflexive and symmetric relation on $L$ which is compatible with meet and join. Equivalently, a tolerance of $L$ is the image of a congruence by a surjective lattice homomorphism onto $L$. The number of tolerances of a chain of $n$ elements is the Catalan number $\frac{1}{n+1}\binom{2n}{n}$, see [2].
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000109: Permutations ⟶ ℤResult quality: 81% values known / values provided: 81%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 1
[1,1] => [1,0,1,0]
=> [2,1] => [2,1] => 2
[2] => [1,1,0,0]
=> [1,2] => [1,2] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => [1,3,2] => 2
[1,2] => [1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 2
[2,1] => [1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 4
[3] => [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,3,2,4] => 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1,2,4] => 4
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,1,2,3] => 8
[4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,3,2,4,5] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 4
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 8
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => [1,3,2,4,5,6] => 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 4
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 8
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [1,3,2,4,5,6,7] => ? = 2
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 2
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => ? = 4
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => ? = 8
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 1
Description
The number of elements less than or equal to the given element in Bruhat order.
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001531: Dyck paths ⟶ ℤResult quality: 78% values known / values provided: 78%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 4
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 8
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 8
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 4
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 8
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 8
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
Description
Number of partial orders contained in the poset determined by the Dyck path. A Dyck path determines a poset, where the relations correspond to boxes under the path (seen as a North-East path). This statistic is closely related to unicellular LLT polynomials and their e-expansion.
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001959: Dyck paths ⟶ ℤResult quality: 78% values known / values provided: 78%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 4
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 8
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 8
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 4
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 8
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 8
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
Description
The product of the heights of the peaks of a Dyck path.
The following 236 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St000699The toughness times the least common multiple of 1,. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001943The sum of the squares of the hook lengths of an integer partition. St000949Gives the number of generalised tilting modules of the corresponding LNakayama algebra. St001243The sum of coefficients in the Schur basis of certain LLT polynomials associated with a Dyck path. St001361The number of lattice paths of the same length that stay weakly above a Dyck path. St000977MacMahon's equal index of a Dyck path. St000456The monochromatic index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001645The pebbling number of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000264The girth of a graph, which is not a tree. St001060The distinguishing index of a graph. St001118The acyclic chromatic index of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000045The number of linear extensions of a binary tree. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000137The Grundy value of an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000782The indicator function of whether a given perfect matching is an L & P matching. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001360The number of covering relations in Young's lattice below a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001527The cyclic permutation representation number of an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001570The minimal number of edges to add to make a graph Hamiltonian. St001571The Cartan determinant of the integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000145The Dyson rank of a partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000219The number of occurrences of the pattern 231 in a permutation. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001541The Gini index of an integer partition. St001545The second Elser number of a connected graph. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000474Dyson's crank of a partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000464The Schultz index of a connected graph. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000997The even-odd crank of an integer partition. St000284The Plancherel distribution on integer partitions. St000478Another weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000928The sum of the coefficients of the character polynomial of an integer partition. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000762The sum of the positions of the weak records of an integer composition. St000806The semiperimeter of the associated bargraph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St000508Eigenvalues of the random-to-random operator acting on a simple module. St000981The length of the longest zigzag subpath. St000438The position of the last up step in a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000674The number of hills of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001808The box weight or horizontal decoration of a Dyck path. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000444The length of the maximal rise of a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000932The number of occurrences of the pattern UDU in a Dyck path. St000947The major index east count of a Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000658The number of rises of length 2 of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000693The modular (standard) major index of a standard tableau. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000874The position of the last double rise in a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000946The sum of the skew hook positions in a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St000978The sum of the positions of double down-steps of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000984The number of boxes below precisely one peak. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001722The number of minimal chains with small intervals between a binary word and the top element. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001811The Castelnuovo-Mumford regularity of a permutation.