searching the database
Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000106
St000106: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2
['A',2]
=> 6
['B',2]
=> 8
Description
The size of the associated Weyl group.
Matching statistic: St001751
St001751: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2
['A',2]
=> 6
['B',2]
=> 8
Description
The number of proper elements in the Weyl group of a finite Cartan type.
Matching statistic: St000063
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 8
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition λ also counts cover-inclusive Dyck tilings of λ∖μ, summed over all μ, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Matching statistic: St000184
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000184: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000184: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 8
Description
The size of the centralizer of any permutation of given cycle type.
The centralizer (or commutant, equivalently normalizer) of an element g of a group G is the set of elements of G that commute with g:
Cg={h∈G:hgh−1=g}.
Its size thus depends only on the conjugacy class of g.
The conjugacy classes of a permutation is determined by its cycle type, and the size of the centralizer of a permutation with cycle type λ=(1a1,2a2,…) is
|C|=Πjajaj!
For example, for any permutation with cycle type λ=(3,2,2,1),
|C|=(31⋅1!)(22⋅2!)(11⋅1!)=24.
There is exactly one permutation of the empty set, the identity, so the statistic on the empty partition is 1.
Matching statistic: St000708
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 8
Description
The product of the parts of an integer partition.
Matching statistic: St001834
Values
['A',1]
=> ([],1)
=> ([],1)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 8
Description
The number of non-isomorphic minors of a graph.
A minor of a graph G is a graph obtained from G by repeatedly deleting or contracting edges, or removing isolated vertices.
This statistic records the total number of (non-empty) non-isomorphic minors of a graph.
Matching statistic: St000350
Values
['A',1]
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 4 = 6 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 6 = 8 - 2
Description
The sum of the vertex degrees of a graph.
This is clearly equal to twice the number of edges, and, incidentally, also equal to the trace of the Laplacian matrix of a graph. From this it follows that it is also the sum of the squares of the eigenvalues of the adjacency matrix of the graph.
The Laplacian matrix is defined as D−A where D is the degree matrix (the diagonal matrix with the vertex degrees on the diagonal) and where A is the adjacency matrix. See [1] for detailed definitions.
Matching statistic: St000300
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 8
Description
The number of independent sets of vertices of a graph.
An independent set of vertices of a graph G is a subset U⊂V(G) such that no two vertices in U are adjacent.
This is also the number of vertex covers of G as the map U↦V(G)∖U is a bijection between independent sets of vertices and vertex covers.
The size of the largest independent set, also called independence number of G, is [[St000093]]
Matching statistic: St000468
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
Description
The Hosoya index of a graph.
This is the total number of matchings in the graph.
Matching statistic: St000915
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
Description
The Ore degree of a graph.
This is the maximal Ore degree of an edge, which is the sum of the degrees of its two endpoints.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001808The box weight or horizontal decoration of a Dyck path. St000081The number of edges of a graph. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001649The length of a longest trail in a graph. St000979Half of MacMahon's equal index of a Dyck path. St001708The number of pairs of vertices of different degree in a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!