searching the database
Your data matches 84 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001871
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],3)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
Description
The number of triconnected components of a graph.
A connected graph is '''triconnected''' or '''3-vertex connected''' if it cannot be disconnected by removing two or fewer vertices. An arbitrary connected graph can be decomposed as a union of biconnected (2-vertex connected) graphs, known as '''blocks''', and each biconnected graph can be decomposed as a union of components with are either a cycle (type "S"), a cocyle (type "P"), or triconnected (type "R"). The decomposition of a biconnected graph into these components is known as the '''SPQR-tree''' of the graph.
Matching statistic: St000370
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0
([],2)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
Description
The genus of a graph.
This is the smallest genus of an oriented surface on which the graph can be embedded without crossings. One can indeed compute the genus as the sum of the genuses for the connected components.
Matching statistic: St001104
Mp00154: Graphs ācoreā¶ Graphs
Mp00152: Graphs āLaplacian multiplicitiesā¶ Integer compositions
Mp00231: Integer compositions ābounce pathā¶ Dyck paths
St001104: Dyck paths ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00152: Graphs āLaplacian multiplicitiesā¶ Integer compositions
Mp00231: Integer compositions ābounce pathā¶ Dyck paths
St001104: Dyck paths ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => [1,0]
=> 0
([],2)
=> ([],1)
=> [1] => [1,0]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([],3)
=> ([],1)
=> [1] => [1,0]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([],4)
=> ([],1)
=> [1] => [1,0]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
([],5)
=> ([],1)
=> [1] => [1,0]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 0
Description
The number of descents of the invariant in a tensor power of the adjoint representation of the rank two general linear group.
Following Stembridge [1, cor.4.7], the highest weight words indexing the irreducibles in $\mathfrak{gl_n}^{\otimes r}$ are ''staircase tableaux'' of length $2r$: sequences $(\gamma^{(0)},\dots,\gamma^{(2r)})$ of vectors in $\mathbb Z^n$ with decreasing entries, such that $\gamma^{(2i+1)}$ is obtained from $\gamma^{(2i)}$ by adding a unit vector and $\gamma^{(2i)}$ is obtained from $\gamma^{(2i-1)}$ by subtracting a unit vector.
For $n=2$, the staircase tableaux whose final element is the zero vector are in natural correspondence with Dyck paths: adding the first or subtracting the second unit vector is translated to an up step, whereas adding the second or subtracting the first unit vector is translated to a down step.
A Dyck path can be transformed into a ''bicoloured Motzkin path'' by replacing double up steps (double down, up-down, down-up steps) with up steps (down, coloured level, level steps). Note that the resulting path cannot have coloured level steps at height zero.
In this context, say that a bicoloured Motzkin path has a $\mathfrak{gl}_2$-''descent'' between the following pairs of steps:
* an up step followed by a level step
* an up step followed by a down step, if the final height is not zero
* a coloured level step followed by any non-coloured step.
Then, conjecturally, the quasisymmetric expansion of the Frobenius character of the symmetric group $\mathfrak S_r$ acting on $\mathfrak{gl}_2^{\otimes r}$, is
$$
\sum_M F_{Des(M)},
$$
where the sum is over all length $r$ prefixes of bicoloured Motzkin paths, $Des(M)$ is the set of indices of descents of the path $M$ and $F_D$ is Gessel's fundamental quasisymmetric function.
The statistic recorded here is the number of $\mathfrak{gl}_2$-descents in the bicoloured Motzkin path corresponding to the Dyck path.
Restricting to Motzkin paths without coloured steps one obtains the quasisymmetric expansion for the Frobenius character of $\mathfrak S_r$ acting on $\mathfrak{sl}_2^{\otimes r}$. In this case, the conjecture was shown by Braunsteiner [2].
Matching statistic: St000547
Mp00154: Graphs ācoreā¶ Graphs
Mp00275: Graphs āto edge-partition of connected componentsā¶ Integer partitions
St000547: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00275: Graphs āto edge-partition of connected componentsā¶ Integer partitions
St000547: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 0
([],2)
=> ([],1)
=> []
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [1]
=> 0
([],3)
=> ([],1)
=> []
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([],4)
=> ([],1)
=> []
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
([],5)
=> ([],1)
=> []
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> ? = 1
Description
The number of even non-empty partial sums of an integer partition.
Matching statistic: St000755
Mp00154: Graphs ācoreā¶ Graphs
Mp00275: Graphs āto edge-partition of connected componentsā¶ Integer partitions
St000755: Integer partitions ā¶ ā¤Result quality: 97% āvalues known / values provided: 97%ādistinct values known / distinct values provided: 100%
Mp00275: Graphs āto edge-partition of connected componentsā¶ Integer partitions
St000755: Integer partitions ā¶ ā¤Result quality: 97% āvalues known / values provided: 97%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> ? = 0 + 1
([],2)
=> ([],1)
=> []
=> ? = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([],3)
=> ([],1)
=> []
=> ? = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([],4)
=> ([],1)
=> []
=> ? = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 2 = 1 + 1
([],5)
=> ([],1)
=> []
=> ? = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1 = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 2 = 1 + 1
([],6)
=> ([],1)
=> []
=> ? = 0 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> ? = 1 + 1
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Matching statistic: St000506
Mp00154: Graphs ācoreā¶ Graphs
Mp00275: Graphs āto edge-partition of connected componentsā¶ Integer partitions
Mp00044: Integer partitions āconjugateā¶ Integer partitions
St000506: Integer partitions ā¶ ā¤Result quality: 97% āvalues known / values provided: 97%ādistinct values known / distinct values provided: 100%
Mp00275: Graphs āto edge-partition of connected componentsā¶ Integer partitions
Mp00044: Integer partitions āconjugateā¶ Integer partitions
St000506: Integer partitions ā¶ ā¤Result quality: 97% āvalues known / values provided: 97%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> []
=> ? = 0
([],2)
=> ([],1)
=> []
=> []
=> ? = 0
([(0,1)],2)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([],3)
=> ([],1)
=> []
=> []
=> ? = 0
([(1,2)],3)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([],4)
=> ([],1)
=> []
=> []
=> ? = 0
([(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([],5)
=> ([],1)
=> []
=> []
=> ? = 0
([(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 1
([],6)
=> ([],1)
=> []
=> []
=> ? = 0
([(4,5)],6)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [1]
=> [1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
Description
The number of standard desarrangement tableaux of shape equal to the given partition.
A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
* [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition
* [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St000723
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],0)
=> ? = 0 + 1
([],2)
=> ([],1)
=> ([],0)
=> ? = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([],3)
=> ([],1)
=> ([],0)
=> ? = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([],4)
=> ([],1)
=> ([],0)
=> ? = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
([],5)
=> ([],1)
=> ([],0)
=> ? = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1 = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1 + 1
([],6)
=> ([],1)
=> ([],0)
=> ? = 0 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1 + 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1 + 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1 + 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1 + 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ? = 1 + 1
Description
The maximal cardinality of a set of vertices with the same neighbourhood in a graph.
The set of so called mating graphs, for which this statistic equals $1$, is enumerated by [1].
Matching statistic: St000274
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([],6)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? = 1
Description
The number of perfect matchings of a graph.
A matching of a graph $G$ is a subset $F \subset E(G)$ such that no two edges in $F$ share a vertex in common. A perfect matching $F'$ is then a matching such that every vertex in $V(G)$ is incident with exactly one edge in $F'$.
Matching statistic: St001826
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([],6)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ?
=> ?
=> ? = 1
Description
The maximal number of leaves on a vertex of a graph.
Matching statistic: St001198
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00324: Graphs āchromatic difference sequenceā¶ Integer compositions
Mp00040: Integer compositions āto partitionā¶ Integer partitions
Mp00230: Integer partitions āparallelogram polyominoā¶ Dyck paths
St001198: Dyck paths ā¶ ā¤Result quality: 91% āvalues known / values provided: 91%ādistinct values known / distinct values provided: 100%
Mp00040: Integer compositions āto partitionā¶ Integer partitions
Mp00230: Integer partitions āparallelogram polyominoā¶ Dyck paths
St001198: Dyck paths ā¶ ā¤Result quality: 91% āvalues known / values provided: 91%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> [1,0]
=> ? = 0 + 2
([],2)
=> [2] => [2]
=> [1,0,1,0]
=> 2 = 0 + 2
([(0,1)],2)
=> [1,1] => [1,1]
=> [1,1,0,0]
=> ? = 0 + 2
([],3)
=> [3] => [3]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(1,2)],3)
=> [2,1] => [2,1]
=> [1,0,1,1,0,0]
=> 2 = 0 + 2
([(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> [1,0,1,1,0,0]
=> 2 = 0 + 2
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 0 + 2
([],4)
=> [4] => [4]
=> [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
([(2,3)],4)
=> [3,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2,2]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2,2]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([],5)
=> [5] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
([(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(1,4),(2,3)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([],6)
=> [6] => [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
([(4,5)],6)
=> [5,1] => [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(3,5),(4,5)],6)
=> [5,1] => [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
The following 74 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001881The number of factors of a lattice as a Cartesian product of lattices. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000455The second largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001877Number of indecomposable injective modules with projective dimension 2. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001256Number of simple reflexive modules that are 2-stable reflexive. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nā1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001473The absolute value of the sum of all entries of the Coxeter matrix of the corresponding LNakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001872The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001722The number of minimal chains with small intervals between a binary word and the top element. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000264The girth of a graph, which is not a tree. St000069The number of maximal elements of a poset. St001845The number of join irreducibles minus the rank of a lattice. St000068The number of minimal elements in a poset. St000454The largest eigenvalue of a graph if it is integral. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St001301The first Betti number of the order complex associated with the poset. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St001793The difference between the clique number and the chromatic number of a graph. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database ā it's very simple and we need your support!