Your data matches 31 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[2,3,1,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,4,2,3,5] => [1,4,2,3,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[2,3,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[2,3,4,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[2,4,3,1,5] => [1,4,3,2,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[3,4,2,1,5] => [1,4,3,2,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,5,4,6] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[1,2,4,3,5,6] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[1,2,4,5,3,6] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[1,2,5,3,4,6] => [1,2,5,3,4,6] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[1,2,5,4,3,6] => [1,2,5,4,3,6] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[1,3,2,4,5,6] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
[1,3,4,2,5,6] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[1,3,4,5,2,6] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[1,3,5,2,4,6] => [1,3,5,2,4,6] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[1,3,5,4,2,6] => [1,2,5,4,3,6] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[1,4,2,3,5,6] => [1,4,2,3,5,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[1,4,3,2,5,6] => [1,4,3,2,5,6] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[1,4,5,2,3,6] => [1,3,5,2,4,6] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[1,4,5,3,2,6] => [1,2,5,4,3,6] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[1,5,2,3,4,6] => [1,5,2,3,4,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[1,5,2,4,3,6] => [1,5,2,4,3,6] => [1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
[1,5,3,2,4,6] => [1,5,3,2,4,6] => [1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[1,5,3,4,2,6] => [1,5,2,4,3,6] => [1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
[1,5,4,2,3,6] => [1,5,4,2,3,6] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[1,5,4,3,2,6] => [1,5,4,3,2,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[2,3,1,4,5,6] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
[2,3,4,1,5,6] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[2,3,4,5,1,6] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[2,3,5,1,4,6] => [1,3,5,2,4,6] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,3,5,4,1,6] => [1,2,5,4,3,6] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[2,4,3,1,5,6] => [1,4,3,2,5,6] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[2,4,5,1,3,6] => [1,3,5,2,4,6] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[2,4,5,3,1,6] => [1,2,5,4,3,6] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[2,5,3,1,4,6] => [1,5,3,2,4,6] => [1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[2,5,3,4,1,6] => [1,5,2,4,3,6] => [1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
[2,5,4,3,1,6] => [1,5,4,3,2,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[3,4,2,1,5,6] => [1,4,3,2,5,6] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[3,4,5,1,2,6] => [1,3,5,2,4,6] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[3,4,5,2,1,6] => [1,2,5,4,3,6] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[3,5,4,2,1,6] => [1,5,4,3,2,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000907: Posets ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
[3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 4
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 5
[1,2,5,4,3,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 5
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 2
[1,3,5,4,2,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 5
[1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
[1,4,3,2,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
[1,4,5,2,3,6] => [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[1,4,5,3,2,6] => [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 5
[1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4
[1,5,2,4,3,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1
[1,5,3,2,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6
[1,5,3,4,2,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1
[1,5,4,2,3,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6
[1,5,4,3,2,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4
[2,3,1,4,5,6] => [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,1,5,6] => [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,5,1,6] => [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,5,1,4,6] => [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 2
[2,3,5,4,1,6] => [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 5
[2,4,3,1,5,6] => [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
[2,4,5,1,3,6] => [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[2,4,5,3,1,6] => [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 5
[2,5,3,1,4,6] => [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6
[2,5,3,4,1,6] => [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1
[2,5,4,3,1,6] => [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4
[3,4,2,1,5,6] => [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 5
[3,4,5,1,2,6] => [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 2
[3,4,5,2,1,6] => [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 5
[3,5,4,2,1,6] => [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 4
[4,5,3,2,1,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 4
[1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 3
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6
[1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6
[1,2,5,6,3,4,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 3
[1,2,5,6,4,3,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 6
[1,2,6,3,4,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 5
[1,2,6,3,5,4,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2
[1,2,6,4,3,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 7
[1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2
[1,2,6,5,3,4,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 7
[1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 5
[1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,4,6,5,7] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,5,6,4,7] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,2,5,6,7] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,2,6,7] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,6,2,7] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,6,2,5,7] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 3
[1,3,4,6,5,2,7] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6
[1,3,5,2,4,6,7] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 3
[1,3,5,4,2,6,7] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6
[1,3,5,6,2,4,7] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 3
[1,3,5,6,4,2,7] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 6
[1,3,6,2,4,5,7] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2
[1,3,6,2,5,4,7] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 1
[1,3,6,4,2,5,7] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 7
[1,3,6,4,5,2,7] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 2
[1,3,6,5,4,2,7] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 5
[2,3,1,4,5,6,7] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,4,6,5,7] => [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,5,6,4,7] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,1,5,6,7] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,1,6,7] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,6,1,7] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The number of maximal antichains of minimal length in a poset.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00209: Permutations pattern posetPosets
St000528: Posets ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,2,5,4,3,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[1,3,5,4,2,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,3,2,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,5,2,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[1,4,5,3,2,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,5,2,3,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 4
[1,5,2,4,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[1,5,3,4,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 6
[1,5,4,3,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,5,1,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[2,3,5,4,1,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[2,4,3,1,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,4,5,1,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[2,4,5,3,1,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,5,3,1,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[3,4,2,1,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[3,4,5,1,2,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 2
[3,4,5,2,1,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 5
[3,5,4,2,1,6] => [1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[4,5,3,2,1,6] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 4
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 5
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 7
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 7
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 5
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The height of a poset. This equals the rank of the poset [[St000080]] plus one.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00209: Permutations pattern posetPosets
St000911: Posets ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,2,5,4,3,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[1,3,5,4,2,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,3,2,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,5,2,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[1,4,5,3,2,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,5,2,3,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 4
[1,5,2,4,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[1,5,3,4,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 6
[1,5,4,3,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,5,1,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[2,3,5,4,1,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[2,4,3,1,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,4,5,1,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[2,4,5,3,1,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,5,3,1,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[3,4,2,1,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[3,4,5,1,2,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 2
[3,4,5,2,1,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 5
[3,5,4,2,1,6] => [1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[4,5,3,2,1,6] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 4
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 5
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 7
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 7
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 5
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The number of maximal antichains of maximal size in a poset.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00209: Permutations pattern posetPosets
St000912: Posets ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,2,5,4,3,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[1,3,5,4,2,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,3,2,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,5,2,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[1,4,5,3,2,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,5,2,3,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 4
[1,5,2,4,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[1,5,3,4,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 6
[1,5,4,3,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,5,1,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[2,3,5,4,1,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[2,4,3,1,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,4,5,1,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[2,4,5,3,1,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,5,3,1,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[3,4,2,1,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[3,4,5,1,2,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 2
[3,4,5,2,1,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 5
[3,5,4,2,1,6] => [1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[4,5,3,2,1,6] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 4
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 5
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 7
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 7
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 5
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The number of maximal antichains in a poset.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00209: Permutations pattern posetPosets
St001343: Posets ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,2,5,4,3,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[1,3,5,4,2,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,3,2,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,4,5,2,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[1,4,5,3,2,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[1,5,2,3,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 4
[1,5,2,4,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[1,5,3,4,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 6
[1,5,4,3,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,5,1,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2
[2,3,5,4,1,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[2,4,3,1,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,4,5,1,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2
[2,4,5,3,1,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5
[2,5,3,1,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6
[2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[3,4,2,1,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5
[3,4,5,1,2,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 2
[3,4,5,2,1,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 5
[3,5,4,2,1,6] => [1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4
[4,5,3,2,1,6] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 4
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 5
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 7
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 7
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 5
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The dimension of the reduced incidence algebra of a poset. The reduced incidence algebra of a poset is the subalgebra of the incidence algebra consisting of the elements which assign the same value to any two intervals that are isomorphic to each other as posets. Thus, this statistic returns the number of non-isomorphic intervals of the poset.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00209: Permutations pattern posetPosets
St000070: Posets ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 4 = 3 + 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 + 1
[1,2,5,4,3,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2 + 1
[1,3,5,4,2,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 + 1
[1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 + 1
[1,4,3,2,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 + 1
[1,4,5,2,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2 + 1
[1,4,5,3,2,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 + 1
[1,5,2,3,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 4 + 1
[1,5,2,4,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 + 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6 + 1
[1,5,3,4,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 + 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 6 + 1
[1,5,4,3,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 + 1
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
[2,3,5,1,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2 + 1
[2,3,5,4,1,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 + 1
[2,4,3,1,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 + 1
[2,4,5,1,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2 + 1
[2,4,5,3,1,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 + 1
[2,5,3,1,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6 + 1
[2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 + 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 + 1
[3,4,2,1,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 + 1
[3,4,5,1,2,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 2 + 1
[3,4,5,2,1,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 5 + 1
[3,5,4,2,1,6] => [1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 + 1
[4,5,3,2,1,6] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 4 + 1
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 + 1
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 + 1
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3 + 1
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 + 1
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 + 1
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 + 1
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 + 1
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 + 1
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 5 + 1
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2 + 1
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 7 + 1
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2 + 1
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 7 + 1
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 5 + 1
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3 + 1
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 + 1
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 + 1
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 + 1
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 + 1
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8 = 7 + 1
Description
The number of antichains in a poset. An antichain in a poset $P$ is a subset of elements of $P$ which are pairwise incomparable. An order ideal is a subset $I$ of $P$ such that $a\in I$ and $b \leq_P a$ implies $b \in I$. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00209: Permutations pattern posetPosets
St001631: Posets ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[1,2,5,4,3,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2 - 1
[1,3,5,4,2,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[1,4,3,2,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[1,4,5,2,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2 - 1
[1,4,5,3,2,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[1,5,2,3,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 4 - 1
[1,5,2,4,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 - 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6 - 1
[1,5,3,4,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 - 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 6 - 1
[1,5,4,3,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 - 1
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,5,1,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2 - 1
[2,3,5,4,1,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[2,4,3,1,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[2,4,5,1,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2 - 1
[2,4,5,3,1,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[2,5,3,1,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6 - 1
[2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 - 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 - 1
[3,4,2,1,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[3,4,5,1,2,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 2 - 1
[3,4,5,2,1,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 5 - 1
[3,5,4,2,1,6] => [1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 - 1
[4,5,3,2,1,6] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 4 - 1
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3 - 1
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 - 1
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 5 - 1
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2 - 1
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 7 - 1
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2 - 1
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 7 - 1
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 5 - 1
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3 - 1
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 - 1
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 - 1
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
Description
The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00209: Permutations pattern posetPosets
St001879: Posets ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[3,4,2,1,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 4 - 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[1,2,5,4,3,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2 - 1
[1,3,5,4,2,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[1,4,3,2,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[1,4,5,2,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2 - 1
[1,4,5,3,2,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[1,5,2,3,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 4 - 1
[1,5,2,4,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 - 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6 - 1
[1,5,3,4,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 - 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 6 - 1
[1,5,4,3,2,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 - 1
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,5,1,4,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 2 - 1
[2,3,5,4,1,6] => [1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[2,4,3,1,5,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[2,4,5,1,3,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 2 - 1
[2,4,5,3,1,6] => [1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 5 - 1
[2,5,3,1,4,6] => [1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 6 - 1
[2,5,3,4,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 1 - 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 - 1
[3,4,2,1,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 5 - 1
[3,4,5,1,2,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 2 - 1
[3,4,5,2,1,6] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 5 - 1
[3,5,4,2,1,6] => [1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 4 - 1
[4,5,3,2,1,6] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? = 4 - 1
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3 - 1
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 - 1
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 5 - 1
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2 - 1
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => ([(0,4),(0,5),(0,6),(1,16),(2,8),(2,9),(3,2),(3,11),(3,12),(4,10),(4,13),(5,3),(5,13),(5,14),(6,1),(6,10),(6,14),(8,19),(9,19),(9,20),(10,15),(10,16),(11,9),(11,17),(11,18),(12,8),(12,17),(13,12),(13,15),(14,11),(14,15),(14,16),(15,17),(15,18),(16,18),(17,19),(17,20),(18,20),(19,7),(20,7)],21)
=> ? = 7 - 1
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 2 - 1
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 7 - 1
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => ([(0,1),(0,4),(0,5),(0,6),(1,18),(2,8),(2,9),(2,21),(3,2),(3,11),(3,12),(3,20),(4,10),(4,14),(4,18),(5,10),(5,13),(5,18),(6,3),(6,13),(6,14),(6,18),(8,17),(8,19),(9,17),(9,19),(10,15),(10,20),(11,8),(11,16),(11,21),(12,9),(12,16),(12,21),(13,11),(13,15),(13,20),(14,12),(14,15),(14,20),(15,16),(15,21),(16,17),(16,19),(17,7),(18,20),(19,7),(20,21),(21,19)],22)
=> ? = 5 - 1
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 3 - 1
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => ([(0,2),(0,3),(0,6),(1,10),(1,15),(2,12),(3,7),(3,12),(4,5),(4,11),(4,13),(5,1),(5,9),(5,14),(6,4),(6,7),(6,12),(7,11),(7,13),(9,10),(9,15),(10,8),(11,9),(11,14),(12,13),(13,14),(14,15),(15,8)],16)
=> ? = 6 - 1
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 - 1
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 6 - 1
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => ([(0,1),(0,5),(0,6),(1,14),(2,11),(2,17),(3,4),(3,13),(3,17),(4,10),(4,16),(5,2),(5,12),(5,14),(6,3),(6,12),(6,14),(8,7),(9,8),(9,15),(10,8),(10,15),(11,9),(11,16),(12,11),(12,13),(12,17),(13,9),(13,10),(13,16),(14,17),(15,7),(16,15),(17,16)],18)
=> ? = 3 - 1
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001330
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00064: Permutations reversePermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 71%
Values
[1,2,3] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,3,2,4] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,3,1,4] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,4,2,3,5] => [1,2,4,3,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,4,3,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,4,3,1,5] => [1,2,4,3,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[3,4,2,1,5] => [1,3,2,4,5] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,2,5,3,4,6] => [1,2,3,5,4,6] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[1,2,5,4,3,6] => [1,2,3,5,4,6] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,4,2,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,4,5,2,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,5,2,4,6] => [1,2,3,5,4,6] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,3,5,4,2,6] => [1,2,3,5,4,6] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[1,4,2,3,5,6] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[1,4,3,2,5,6] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[1,4,5,2,3,6] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,4,5,3,2,6] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[1,5,2,3,4,6] => [1,2,5,4,3,6] => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[1,5,2,4,3,6] => [1,2,5,3,4,6] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,5,3,2,4,6] => [1,2,5,4,3,6] => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[1,5,3,4,2,6] => [1,2,5,3,4,6] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,5,4,2,3,6] => [1,2,5,3,4,6] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[1,5,4,3,2,6] => [1,2,5,3,4,6] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[2,3,1,4,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[2,3,4,1,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[2,3,4,5,1,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[2,3,5,1,4,6] => [1,2,3,5,4,6] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[2,3,5,4,1,6] => [1,2,3,5,4,6] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[2,4,3,1,5,6] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[2,4,5,1,3,6] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[2,4,5,3,1,6] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[2,5,3,1,4,6] => [1,2,5,4,3,6] => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[2,5,3,4,1,6] => [1,2,5,3,4,6] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[2,5,4,3,1,6] => [1,2,5,3,4,6] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[3,4,2,1,5,6] => [1,3,2,4,5,6] => [6,5,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[3,4,5,1,2,6] => [1,3,5,2,4,6] => [6,4,2,5,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[3,4,5,2,1,6] => [1,3,5,2,4,6] => [6,4,2,5,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[3,5,4,2,1,6] => [1,3,4,2,5,6] => [6,5,2,4,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[4,5,3,2,1,6] => [1,4,2,5,3,6] => [6,3,5,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,3,6,4,5,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,2,3,6,5,4,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,4,6,3,5,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,2,4,6,5,3,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,2,5,3,4,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,2,5,4,3,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,2,5,6,3,4,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,2,5,6,4,3,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,2,6,3,4,5,7] => [1,2,3,6,5,4,7] => [7,4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,3,5,4,7] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,2,6,4,3,5,7] => [1,2,3,6,5,4,7] => [7,4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[1,2,6,4,5,3,7] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,2,6,5,3,4,7] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[1,2,6,5,4,3,7] => [1,2,3,6,4,5,7] => [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,3,2,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,3,4,2,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,3,4,5,2,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,3,4,5,6,2,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,3,4,6,2,5,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,3,4,6,5,2,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,3,5,2,4,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,3,5,4,2,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[1,3,5,6,2,4,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[2,3,1,4,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[2,3,1,4,6,5,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[2,3,1,5,6,4,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[2,3,4,1,5,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[2,3,4,5,1,6,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[2,3,4,5,6,1,7] => [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
The following 21 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000454The largest eigenvalue of a graph if it is integral. St000308The height of the tree associated to a permutation. St001430The number of positive entries in a signed permutation. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St000177The number of free tiles in the pattern. St000189The number of elements in the poset. St000656The number of cuts of a poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001717The largest size of an interval in a poset. St000080The rank of the poset. St000104The number of facets in the order polytope of this poset. St000151The number of facets in the chain polytope of the poset. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000643The size of the largest orbit of antichains under Panyushev complementation. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001664The number of non-isomorphic subposets of a poset. St001782The order of rowmotion on the set of order ideals of a poset.