searching the database
Your data matches 222 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000036
St000036: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 2
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 1
[1,3,2,4,5] => 1
[1,3,2,5,4] => 1
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 1
[1,4,2,5,3] => 1
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 2
Description
The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation.
These are multiplicities of Verma modules.
Matching statistic: St000628
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000628: Binary words ⟶ ℤResult quality: 44% ●values known / values provided: 82%●distinct values known / distinct values provided: 44%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000628: Binary words ⟶ ℤResult quality: 44% ●values known / values provided: 82%●distinct values known / distinct values provided: 44%
Values
[1] => [1,0]
=> []
=> => ? = 1
[1,2] => [1,0,1,0]
=> [1]
=> 10 => 1
[2,1] => [1,1,0,0]
=> []
=> => ? = 1
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 1010 => 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 110 => 1
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 100 => 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> 10 => 1
[3,1,2] => [1,1,1,0,0,0]
=> []
=> => ? ∊ {1,1}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> => ? ∊ {1,1}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 101010 => 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1100 => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10101010 => 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 1101010 => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 10011010 => 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 1011010 => 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 10100110 => 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 1100110 => 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 10010110 => 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 1010110 => 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 110110 => 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 110110 => 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 10001110 => 3
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1001110 => 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 10001110 => 3
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1001110 => 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 101110 => 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 101110 => 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1010100 => 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 110100 => 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1001100 => 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,4}
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
Description
The balance of a binary word.
The balance of a word is the smallest number $q$ such that the word is $q$-balanced [1].
A binary word $w$ is $q$-balanced if for any two factors $u$, $v$ of $w$ of the same length, the difference between the number of ones in $u$ and $v$ is at most $q$.
Matching statistic: St000208
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000208: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 78%●distinct values known / distinct values provided: 22%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000208: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 78%●distinct values known / distinct values provided: 22%
Values
[1] => [] => []
=> ?
=> ? = 1
[1,2] => [1] => [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> 1
[1,3,2] => [1,2] => [1,1]
=> [1]
=> 1
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> 1
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> 1
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> 1
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> 1
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,4,2,5] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,4,5,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,5,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,2,1,5] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,2,5,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,5,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,5,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,5,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,2,3,5] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,2,5,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,5,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,1,2,5] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,1,5,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,5,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,5,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,5,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,2,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,4,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,5,1,6] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,4,5,6,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,4,6,5,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,1,4,6] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,1,6,4] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,6,1,4] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight.
Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices.
See also [[St000205]], [[St000206]] and [[St000207]].
Matching statistic: St000755
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 78%●distinct values known / distinct values provided: 22%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 78%●distinct values known / distinct values provided: 22%
Values
[1] => [] => []
=> ?
=> ? = 1
[1,2] => [1] => [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> 1
[1,3,2] => [1,2] => [1,1]
=> [1]
=> 1
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> 1
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> 1
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> 1
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> 1
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,4,2,5] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,4,5,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,5,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,2,1,5] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,2,5,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,5,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,5,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,5,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,2,3,5] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,2,5,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,5,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,1,2,5] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,1,5,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,5,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,5,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,5,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,2,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,4,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,5,1,6] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,4,5,6,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,4,6,5,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,1,4,6] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,1,6,4] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,6,1,4] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Matching statistic: St001389
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001389: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 78%●distinct values known / distinct values provided: 22%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001389: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 78%●distinct values known / distinct values provided: 22%
Values
[1] => [] => []
=> ?
=> ? = 1
[1,2] => [1] => [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> 1
[1,3,2] => [1,2] => [1,1]
=> [1]
=> 1
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> 1
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> 1
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> 1
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> 1
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> 1
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> 1
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,4,2,5] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,4,5,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,1,5,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,2,1,5] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,2,5,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,4,5,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,5,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[3,5,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,2,3,5] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,2,5,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,1,5,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,1,2,5] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,1,5,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,3,5,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,5,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[4,5,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,2,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,4,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[5,4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,5,1,6] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,4,5,6,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,4,6,5,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,1,4,6] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,1,6,4] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
[2,3,5,6,1,4] => [2,3,5,1,4] => [5]
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,8,8,8,9,9,10}
Description
The number of partitions of the same length below the given integer partition.
For a partition $\lambda_1 \geq \dots \lambda_k > 0$, this number is
$$ \det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.$$
Matching statistic: St000460
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St000870
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The product of the hook lengths of the diagonal cells in an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
Matching statistic: St001360
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001360: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001360: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The number of covering relations in Young's lattice below a partition.
Matching statistic: St001380
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001380: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001380: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The number of monomer-dimer tilings of a Ferrers diagram.
For a hook of length $n$, this is the $n$-th Fibonacci number.
Matching statistic: St001914
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001914: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001914: Integer partitions ⟶ ℤResult quality: 44% ●values known / values provided: 78%●distinct values known / distinct values provided: 44%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,3,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,1,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,1,3,5] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,1,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,1,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,1,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,1,5,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,5,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,4,2,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,2,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,5,2,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,1,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,2,4,1] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,1,5,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The size of the orbit of an integer partition in Bulgarian solitaire.
Bulgarian solitaire is the dynamical system where a move consists of removing the first column of the Ferrers diagram and inserting it as a row.
This statistic returns the number of partitions that can be obtained from the given partition.
The following 212 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000667The greatest common divisor of the parts of the partition. St001432The order dimension of the partition. St001571The Cartan determinant of the integer partition. St000456The monochromatic index of a connected graph. St000937The number of positive values of the symmetric group character corresponding to the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001128The exponens consonantiae of a partition. St000744The length of the path to the largest entry in a standard Young tableau. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001964The interval resolution global dimension of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000916The packing number of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001322The size of a minimal independent dominating set in a graph. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St001175The size of a partition minus the hook length of the base cell. St001586The number of odd parts smaller than the largest even part in an integer partition. St000706The product of the factorials of the multiplicities of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St000454The largest eigenvalue of a graph if it is integral. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000618The number of self-evacuating tableaux of given shape. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001527The cyclic permutation representation number of an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St000287The number of connected components of a graph. St000286The number of connected components of the complement of a graph. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001490The number of connected components of a skew partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001487The number of inner corners of a skew partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000068The number of minimal elements in a poset. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001330The hat guessing number of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001875The number of simple modules with projective dimension at most 1. St000897The number of different multiplicities of parts of an integer partition. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St001846The number of elements which do not have a complement in the lattice. St000908The length of the shortest maximal antichain in a poset. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000914The sum of the values of the Möbius function of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001396Number of triples of incomparable elements in a finite poset. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000260The radius of a connected graph. St001864The number of excedances of a signed permutation. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001613The binary logarithm of the size of the center of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001881The number of factors of a lattice as a Cartesian product of lattices. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001845The number of join irreducibles minus the rank of a lattice. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001621The number of atoms of a lattice. St001820The size of the image of the pop stack sorting operator. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000256The number of parts from which one can substract 2 and still get an integer partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001868The number of alignments of type NE of a signed permutation. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001867The number of alignments of type EN of a signed permutation. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001779The order of promotion on the set of linear extensions of a poset. St000632The jump number of the poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000455The second largest eigenvalue of a graph if it is integral. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000264The girth of a graph, which is not a tree. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001282The number of graphs with the same chromatic polynomial. St001316The domatic number of a graph. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000403The Szeged index minus the Wiener index of a graph. St000449The number of pairs of vertices of a graph with distance 4. St000671The maximin edge-connectivity for choosing a subgraph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001395The number of strictly unfriendly partitions of a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001797The number of overfull subgraphs of a graph. St000273The domination number of a graph. St000544The cop number of a graph. St000553The number of blocks of a graph. St001739The number of graphs with the same edge polytope as the given graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St000447The number of pairs of vertices of a graph with distance 3. St000552The number of cut vertices of a graph. St000629The defect of a binary word. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001768The number of reduced words of a signed permutation. St000805The number of peaks of the associated bargraph. St000900The minimal number of repetitions of a part in an integer composition. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St000407The number of occurrences of the pattern 2143 in a permutation. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001518The number of graphs with the same ordinary spectrum as the given graph. St000095The number of triangles of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000322The skewness of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St001765The number of connected components of the friends and strangers graph. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001570The minimal number of edges to add to make a graph Hamiltonian.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!