Your data matches 600 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00193: Lattices to posetPosets
St000068: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 1
Description
The number of minimal elements in a poset.
Mp00193: Lattices to posetPosets
St000069: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 1
Description
The number of maximal elements of a poset.
Mp00335: Lattices zero-divisor graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000003: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> []
=> 1
([(0,1)],2)
=> ([],0)
=> []
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> []
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
Description
The number of [[/StandardTableaux|standard Young tableaux]] of the partition.
Mp00335: Lattices zero-divisor graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000048: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> []
=> 1
([(0,1)],2)
=> ([],0)
=> []
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> []
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
Description
The multinomial of the parts of a partition. Given an integer partition $\lambda = [\lambda_1,\ldots,\lambda_k]$, this is the multinomial $$\binom{|\lambda|}{\lambda_1,\ldots,\lambda_k}.$$ For any integer composition $\mu$ that is a rearrangement of $\lambda$, this is the number of ordered set partitions whose list of block sizes is $\mu$.
Mp00335: Lattices zero-divisor graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000049: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> []
=> 1
([(0,1)],2)
=> ([],0)
=> []
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> []
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
Description
The number of set partitions whose sorted block sizes correspond to the partition.
Mp00335: Lattices zero-divisor graphGraphs
Mp00203: Graphs coneGraphs
St000273: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 1
([(0,1)],2)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The domination number of a graph. The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset.
Mp00335: Lattices zero-divisor graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000275: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> []
=> 1
([(0,1)],2)
=> ([],0)
=> []
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> []
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
Description
Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition.
Mp00335: Lattices zero-divisor graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000278: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> []
=> 1
([(0,1)],2)
=> ([],0)
=> []
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> []
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. This is the multinomial of the multiplicities of the parts, see [1]. This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$, where $k$ is the number of parts of $\lambda$. An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$ where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
Mp00335: Lattices zero-divisor graphGraphs
Mp00203: Graphs coneGraphs
St000287: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 1
([(0,1)],2)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> ([],1)
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The number of connected components of a graph.
Mp00335: Lattices zero-divisor graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000346: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> []
=> 1
([(0,1)],2)
=> ([],0)
=> []
=> 1
([(0,2),(2,1)],3)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> []
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([],0)
=> []
=> 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([],0)
=> []
=> 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([],0)
=> []
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([],0)
=> []
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([],0)
=> []
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
Description
The number of coarsenings of a partition. A partition $\mu$ coarsens a partition $\lambda$ if the parts of $\mu$ can be subdivided to obtain the parts of $\lambda$.
The following 590 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000517The Kreweras number of an integer partition. St000544The cop number of a graph. St000553The number of blocks of a graph. St000759The smallest missing part in an integer partition. St000775The multiplicity of the largest eigenvalue in a graph. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000916The packing number of a graph. St000917The open packing number of a graph. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001316The domatic number of a graph. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001672The restrained domination number of a graph. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001765The number of connected components of the friends and strangers graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St001881The number of factors of a lattice as a Cartesian product of lattices. St000143The largest repeated part of a partition. St000150The floored half-sum of the multiplicities of a partition. St000185The weighted size of a partition. St000257The number of distinct parts of a partition that occur at least twice. St000312The number of leaves in a graph. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St000475The number of parts equal to 1 in a partition. St000481The number of upper covers of a partition in dominance order. St000552The number of cut vertices of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St001091The number of parts in an integer partition whose next smaller part has the same size. St001119The length of a shortest maximal path in a graph. St001214The aft of an integer partition. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001395The number of strictly unfriendly partitions of a graph. St001479The number of bridges of a graph. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001703The villainy of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001826The maximal number of leaves on a vertex of a graph. St001845The number of join irreducibles minus the rank of a lattice. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St000182The number of permutations whose cycle type is the given integer partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000286The number of connected components of the complement of a graph. St000297The number of leading ones in a binary word. St000315The number of isolated vertices of a graph. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000345The number of refinements of a partition. St000383The last part of an integer composition. St000617The number of global maxima of a Dyck path. St000655The length of the minimal rise of a Dyck path. St000657The smallest part of an integer composition. St000667The greatest common divisor of the parts of the partition. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000733The row containing the largest entry of a standard tableau. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000763The sum of the positions of the strong records of an integer composition. St000764The number of strong records in an integer composition. St000765The number of weak records in an integer composition. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000781The number of proper colouring schemes of a Ferrers diagram. St000785The number of distinct colouring schemes of a graph. St000805The number of peaks of the associated bargraph. St000847The number of standard Young tableaux whose descent set is the binary word. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St000913The number of ways to refine the partition into singletons. St000935The number of ordered refinements of an integer partition. St001129The product of the squares of the parts of a partition. St001272The number of graphs with the same degree sequence. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001386The number of prime labellings of a graph. St001624The breadth of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001722The number of minimal chains with small intervals between a binary word and the top element. St000024The number of double up and double down steps of a Dyck path. St000052The number of valleys of a Dyck path not on the x-axis. St000057The Shynar inversion number of a standard tableau. St000059The inversion number of a standard tableau as defined by Haglund and Stevens. St000081The number of edges of a graph. St000091The descent variation of a composition. St000142The number of even parts of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000157The number of descents of a standard tableau. St000169The cocharge of a standard tableau. St000256The number of parts from which one can substract 2 and still get an integer partition. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000271The chromatic index of a graph. St000274The number of perfect matchings of a graph. St000296The length of the symmetric border of a binary word. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000313The number of degree 2 vertices of a graph. St000330The (standard) major index of a standard tableau. St000336The leg major index of a standard tableau. St000386The number of factors DDU in a Dyck path. St000439The position of the first down step of a Dyck path. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000629The defect of a binary word. St000660The number of rises of length at least 3 of a Dyck path. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000761The number of ascents in an integer composition. St000768The number of peaks in an integer composition. St000807The sum of the heights of the valleys of the associated bargraph. St000921The number of internal inversions of a binary word. St000979Half of MacMahon's equal index of a Dyck path. St000995The largest even part of an integer partition. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001092The number of distinct even parts of a partition. St001104The number of descents of the invariant in a tensor power of the adjoint representation of the rank two general linear group. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001271The competition number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001371The length of the longest Yamanouchi prefix of a binary word. St001484The number of singletons of an integer partition. St001578The minimal number of edges to add or remove to make a graph a line graph. St001644The dimension of a graph. St001649The length of a longest trail in a graph. St001689The number of celebrities in a graph. St001695The natural comajor index of a standard Young tableau. St001696The natural major index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001797The number of overfull subgraphs of a graph. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001970The signature of a graph. St001990The number of zero divisors in a lattice. St000993The multiplicity of the largest part of an integer partition. St000095The number of triangles of a graph. St000322The skewness of a graph. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St000929The constant term of the character polynomial of an integer partition. St001281The normalized isoperimetric number of a graph. St001573The minimal number of edges to remove to make a graph triangle-free. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000762The sum of the positions of the weak records of an integer composition. St000908The length of the shortest maximal antichain in a poset. St001498The normalised height of a Nakayama algebra with magnitude 1. St001532The leading coefficient of the Poincare polynomial of the poset cone. St000478Another weight of a partition according to Alladi. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001651The Frankl number of a lattice. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000264The girth of a graph, which is not a tree. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000181The number of connected components of the Hasse diagram for the poset. St001820The size of the image of the pop stack sorting operator. St001846The number of elements which do not have a complement in the lattice. St001533The largest coefficient of the Poincare polynomial of the poset cone. St000914The sum of the values of the Möbius function of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001890The maximum magnitude of the Möbius function of a poset. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001256Number of simple reflexive modules that are 2-stable reflexive. St001481The minimal height of a peak of a Dyck path. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001593This is the number of standard Young tableaux of the given shifted shape. St001964The interval resolution global dimension of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001572The minimal number of edges to remove to make a graph bipartite. St001568The smallest positive integer that does not appear twice in the partition. St000535The rank-width of a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001393The induced matching number of a graph. St000010The length of the partition. St000096The number of spanning trees of a graph. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000183The side length of the Durfee square of an integer partition. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000284The Plancherel distribution on integer partitions. St000349The number of different adjacency matrices of a graph. St000363The number of minimal vertex covers of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000450The number of edges minus the number of vertices plus 2 of a graph. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000548The number of different non-empty partial sums of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000717The number of ordinal summands of a poset. St000783The side length of the largest staircase partition fitting into a partition. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000897The number of different multiplicities of parts of an integer partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000911The number of maximal antichains of maximal size in a poset. St000948The chromatic discriminant of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001057The Grundy value of the game of creating an independent set in a graph. St001128The exponens consonantiae of a partition. St001280The number of parts of an integer partition that are at least two. St001282The number of graphs with the same chromatic polynomial. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001342The number of vertices in the center of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001352The number of internal nodes in the modular decomposition of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001463The number of distinct columns in the nullspace of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001512The minimum rank of a graph. St001546The number of monomials in the Tutte polynomial of a graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001642The Prague dimension of a graph. St001734The lettericity of a graph. St001739The number of graphs with the same edge polytope as the given graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001780The order of promotion on the set of standard tableaux of given shape. St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001828The Euler characteristic of a graph. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001917The order of toric promotion on the set of labellings of a graph. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000038The product of the heights of the descending steps of a Dyck path. St000053The number of valleys of the Dyck path. St000075The orbit size of a standard tableau under promotion. St000079The number of alternating sign matrices for a given Dyck path. St000086The number of subgraphs. St000172The Grundy number of a graph. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000268The number of strongly connected orientations of a graph. St000269The number of acyclic orientations of a graph. St000270The number of forests contained in a graph. St000288The number of ones in a binary word. St000290The major index of a binary word. St000291The number of descents of a binary word. St000299The number of nonisomorphic vertex-induced subtrees. St000306The bounce count of a Dyck path. St000331The number of upper interactions of a Dyck path. St000335The difference of lower and upper interactions. St000343The number of spanning subgraphs of a graph. St000344The number of strongly connected outdegree sequences of a graph. St000382The first part of an integer composition. St000389The number of runs of ones of odd length in a binary word. St000390The number of runs of ones in a binary word. St000391The sum of the positions of the ones in a binary word. St000392The length of the longest run of ones in a binary word. St000418The number of Dyck paths that are weakly below a Dyck path. St000443The number of long tunnels of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000468The Hosoya index of a graph. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000627The exponent of a binary word. St000628The balance of a binary word. St000659The number of rises of length at least 2 of a Dyck path. St000668The least common multiple of the parts of the partition. St000674The number of hills of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000691The number of changes of a binary word. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000722The number of different neighbourhoods in a graph. St000735The last entry on the main diagonal of a standard tableau. St000738The first entry in the last row of a standard tableau. St000741The Colin de Verdière graph invariant. St000753The Grundy value for the game of Kayles on a binary word. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000758The length of the longest staircase fitting into an integer composition. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000770The major index of an integer partition when read from bottom to top. St000792The Grundy value for the game of ruler on a binary word. St000815The number of semistandard Young tableaux of partition weight of given shape. St000816The number of standard composition tableaux of the composition. St000822The Hadwiger number of the graph. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000905The number of different multiplicities of parts of an integer composition. St000933The number of multipartitions of sizes given by an integer partition. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000972The composition number of a graph. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001029The size of the core of a graph. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001072The evaluation of the Tutte polynomial of the graph at x and y equal to 3. St001073The number of nowhere zero 3-flows of a graph. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001093The detour number of a graph. St001108The 2-dynamic chromatic number of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001110The 3-dynamic chromatic number of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001112The 3-weak dynamic number of a graph. St001116The game chromatic number of a graph. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001261The Castelnuovo-Mumford regularity of a graph. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001274The number of indecomposable injective modules with projective dimension equal to two. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001302The number of minimally dominating sets of vertices of a graph. St001303The number of dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001313The number of Dyck paths above the lattice path given by a binary word. St001330The hat guessing number of a graph. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001367The smallest number which does not occur as degree of a vertex in a graph. St001372The length of a longest cyclic run of ones of a binary word. St001389The number of partitions of the same length below the given integer partition. St001415The length of the longest palindromic prefix of a binary word. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001474The evaluation of the Tutte polynomial of the graph at (x,y) equal to (2,-1). St001477The number of nowhere zero 5-flows of a graph. St001478The number of nowhere zero 4-flows of a graph. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001485The modular major index of a binary word. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001494The Alon-Tarsi number of a graph. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001523The degree of symmetry of a Dyck path. St001531Number of partial orders contained in the poset determined by the Dyck path. St001571The Cartan determinant of the integer partition. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001591The number of graphs with the given composition of multiplicities of Laplacian eigenvalues. St001595The number of standard Young tableaux of the skew partition. St001597The Frobenius rank of a skew partition. St001670The connected partition number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001694The number of maximal dissociation sets in a graph. St001716The 1-improper chromatic number of a graph. St001725The harmonious chromatic number of a graph. St001730The number of times the path corresponding to a binary word crosses the base line. St001732The number of peaks visible from the left. St001733The number of weak left to right maxima of a Dyck path. St001777The number of weak descents in an integer composition. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001809The index of the step at the first peak of maximal height in a Dyck path. St001883The mutual visibility number of a graph. St001884The number of borders of a binary word. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001931The weak major index of an integer composition regarded as a word. St001957The number of Hasse diagrams with a given underlying undirected graph. St001959The product of the heights of the peaks of a Dyck path. St001963The tree-depth of a graph. St001972The a-number of a graph. St001984A recursive count of subwords of the form 01, 10 and 11. St000635The number of strictly order preserving maps of a poset into itself. St001613The binary logarithm of the size of the center of a lattice. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St000403The Szeged index minus the Wiener index of a graph. St000637The length of the longest cycle in a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001638The book thickness of a graph. St001736The total number of cycles in a graph. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001621The number of atoms of a lattice. St001743The discrepancy of a graph. St000309The number of vertices with even degree. St000469The distinguishing number of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001691The number of kings in a graph. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000456The monochromatic index of a connected graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000387The matching number of a graph. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001071The beta invariant of the graph. St001286The annihilation number of a graph. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000258The burning number of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000448The number of pairs of vertices of a graph with distance 2. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000567The sum of the products of all pairs of parts. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000918The 2-limited packing number of a graph. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001306The number of induced paths on four vertices in a graph. St001308The number of induced paths on three vertices in a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001350Half of the Albertson index of a graph. St001351The Albertson index of a graph. St001353The number of prime nodes in the modular decomposition of a graph. St001356The number of vertices in prime modules of a graph. St001374The Padmakar-Ivan index of a graph. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001521Half the total irregularity of a graph. St001522The total irregularity of a graph. St001525The number of symmetric hooks on the diagonal of a partition. St001561The value of the elementary symmetric function evaluated at 1. St001574The minimal number of edges to add or remove to make a graph regular. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001586The number of odd parts smaller than the largest even part in an integer partition. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001647The number of edges that can be added without increasing the clique number. St001648The number of edges that can be added without increasing the chromatic number. St001692The number of vertices with higher degree than the average degree in a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001708The number of pairs of vertices of different degree in a graph. St001742The difference of the maximal and the minimal degree in a graph. St001764The number of non-convex subsets of vertices in a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001799The number of proper separations of a graph. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000455The second largest eigenvalue of a graph if it is integral. St000093The cardinality of a maximal independent set of vertices of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001969The difference in the number of possibilities of choosing a pair of negative eigenvalues and the signature of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001545The second Elser number of a connected graph. St001645The pebbling number of a connected graph. St001834The number of non-isomorphic minors of a graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001812The biclique partition number of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph.