Your data matches 118 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00223: Permutations runsortPermutations
St000124: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => 1
[1,2] => [1,2] => 1
[2,1] => [1,2] => 1
[1,2,3] => [1,2,3] => 1
[1,3,2] => [1,3,2] => 1
[2,1,3] => [1,3,2] => 1
[2,3,1] => [1,2,3] => 1
[3,1,2] => [1,2,3] => 1
[3,2,1] => [1,2,3] => 1
[1,2,3,4] => [1,2,3,4] => 1
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,3,4,2] => 1
[1,4,2,3] => [1,4,2,3] => 2
[1,4,3,2] => [1,4,2,3] => 2
[2,1,3,4] => [1,3,4,2] => 1
[2,1,4,3] => [1,4,2,3] => 2
[2,3,1,4] => [1,4,2,3] => 2
[2,3,4,1] => [1,2,3,4] => 1
[2,4,1,3] => [1,3,2,4] => 1
[2,4,3,1] => [1,2,4,3] => 1
[3,1,2,4] => [1,2,4,3] => 1
[3,1,4,2] => [1,4,2,3] => 2
[3,2,1,4] => [1,4,2,3] => 2
[3,2,4,1] => [1,2,4,3] => 1
[3,4,1,2] => [1,2,3,4] => 1
[3,4,2,1] => [1,2,3,4] => 1
[4,1,2,3] => [1,2,3,4] => 1
[4,1,3,2] => [1,3,2,4] => 1
[4,2,1,3] => [1,3,2,4] => 1
[4,2,3,1] => [1,2,3,4] => 1
[4,3,1,2] => [1,2,3,4] => 1
[4,3,2,1] => [1,2,3,4] => 1
[1,2,3,4,5] => [1,2,3,4,5] => 1
[1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,4,5,3] => 1
[1,2,5,3,4] => [1,2,5,3,4] => 2
[1,2,5,4,3] => [1,2,5,3,4] => 2
[1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => 1
[1,3,4,2,5] => [1,3,4,2,5] => 1
[1,3,4,5,2] => [1,3,4,5,2] => 1
[1,3,5,2,4] => [1,3,5,2,4] => 2
[1,3,5,4,2] => [1,3,5,2,4] => 2
[1,4,2,3,5] => [1,4,2,3,5] => 2
[1,4,2,5,3] => [1,4,2,5,3] => 2
[1,4,3,2,5] => [1,4,2,5,3] => 2
[1,4,3,5,2] => [1,4,2,3,5] => 2
[1,4,5,2,3] => [1,4,5,2,3] => 2
Description
The cardinality of the preimage of the Simion-Schmidt map. The Simion-Schmidt bijection transforms a [3,1,2]-avoiding permutation into a [3,2,1]-avoiding permutation. More generally, it can be thought of as a map $S$ that turns any permutation into a [3,2,1]-avoiding permutation. This statistic is the size of $S^{-1}(\pi)$ for each permutation $\pi$. The map $S$ can also be realized using the quotient of the $0$-Hecke Monoid of the symmetric group by the relation $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i$, sending each element of the fiber of the quotient to the unique [3,2,1]-avoiding element in that fiber.
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St000707: Integer partitions ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1]
=> ? ∊ {1,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[3,2,1] => [2,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[1,4,2,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> [2]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[3,1,2,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[3,4,1,2] => [2,2]
=> [2]
=> [2]
=> 2
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[4,3,2,1] => [2,2]
=> [2]
=> [2]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[1,4,5,3,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[2,1,4,5,3] => [3,2]
=> [2]
=> [2]
=> 2
[2,1,5,3,4] => [3,2]
=> [2]
=> [2]
=> 2
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> [2]
=> 2
[2,3,4,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,4,5,1,3] => [3,2]
=> [2]
=> [2]
=> 2
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[2,5,4,3,1] => [3,2]
=> [2]
=> [2]
=> 2
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> [2]
=> 2
[3,1,4,2,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [3]
=> 6
[3,4,1,5,2] => [3,2]
=> [2]
=> [2]
=> 2
[3,4,2,1,5] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
[3,4,5,2,1] => [3,2]
=> [2]
=> [2]
=> 2
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6}
Description
The product of the factorials of the parts.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000706: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 83%
Values
[1] => [1,0]
=> []
=> ?
=> ? = 1
[1,2] => [1,0,1,0]
=> [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1,1,0,0]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1}
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1}
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1}
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1}
[3,1,2] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [3,2,1]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [2,2,1]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [3,1,1]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [2,1,1]
=> 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 6
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 6
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 6
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 6
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 6
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 6
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [3,2]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [2,2]
=> 2
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [2,2]
=> 2
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 2
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 2
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,1]
=> 1
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1]
=> 2
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,1]
=> 2
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1]
=> 2
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,1]
=> 2
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,1,3,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6}
Description
The product of the factorials of the multiplicities of an integer partition.
Mp00108: Permutations cycle typeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001934: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 42%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> [1,0]
=> []
=> ? = 1
[1,2] => [1,1]
=> [1,1,0,0]
=> []
=> ? = 1
[2,1] => [2]
=> [1,0,1,0]
=> [1]
=> 1
[1,2,3] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[2,1,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[2,3,1] => [3]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[3,1,2] => [3]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[3,2,1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,3,4,2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[1,4,2,3] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[2,1,4,3] => [2,2]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1}
[2,3,1,4] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[2,3,4,1] => [4]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[2,4,1,3] => [4]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[2,4,3,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[3,1,2,4] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[3,1,4,2] => [4]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[3,2,4,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[3,4,1,2] => [2,2]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1}
[3,4,2,1] => [4]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[4,1,2,3] => [4]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[4,1,3,2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[4,2,1,3] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[4,3,1,2] => [4]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2
[4,3,2,1] => [2,2]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,3,4] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,4,3] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,4,5,3,2] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,2,3,4] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,3,4,2] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,5,4,2,3] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,4,3,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[2,1,4,5,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,1,5,3,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,1,5,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,3,4,1,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,4,5,1] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,5,1,4] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,5,4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,1,3,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,1,5,3] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,3,5,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,5,1,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,4,5,3,1] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,1,3,4] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,1,4,3] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,3,1,4] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,4,1,3] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,4,3,1] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[3,1,2,4,5] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,2,5,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[3,1,4,2,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,4,5,2] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,5,2,4] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,5,4,2] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,2,1,4,5] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[3,2,1,5,4] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,2,4,5,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,2,5,1,4] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,2,5,4,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,4,2,1,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,4,2,5,1] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,4,5,1,2] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,5,2,1,4] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,5,2,4,1] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,5,4,2,1] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[4,1,2,3,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type. A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions $$ (a_1, b_1),\dots,(a_r, b_r) $$ with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$. For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
Mp00159: Permutations Demazure product with inversePermutations
Mp00065: Permutations permutation posetPosets
Mp00205: Posets maximal antichainsLattices
St001630: Lattices ⟶ ℤResult quality: 33% values known / values provided: 41%distinct values known / distinct values provided: 33%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 1
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1}
[2,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,1}
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1}
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1}
[2,3,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1}
[3,1,2] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1}
[3,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1}
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[1,4,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[1,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,4,1] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,4,1,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,3,1] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,2,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,4,2] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,2,4,1] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,4,1,2] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,4,2,1] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,1,2,3] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,1,3,2] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,2,1,3] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,2,3,1] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,3,1,2] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,3,2,1] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,2,4,5,3] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,5,3,4] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,2,5,4,3] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,4,5,2] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,3,5,2,4] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,2,5,3] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,3,5,2] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,2,3,4] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,5,2,4,3] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 1
[1,5,3,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,3,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,4,2,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,4,3,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[2,1,3,5,4] => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,1,4,3,5] => [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,1,4,5,3] => [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,5,3,4] => [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,5,4,3] => [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,1,4,5] => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,1,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,4,1,5] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,4,5,1] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[2,3,5,1,4] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,5,4,1] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,1,3,5] => [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,3,1,5] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,3,5,1] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,5,1,3] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,5,3,1] => [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,1,3,4] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,1,4,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,3,1,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,3,4,1] => [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,4,1,3] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,4,3,1] => [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,2,4,5] => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,2,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,4,2,5] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,4,5,2] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,5,2,4] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,5,4,2] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,2,1,4,5] => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,1,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,2,4,1,5] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,4,5,1] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[3,2,5,1,4] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,5,4,1] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,4,1,2,5] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,4,1,5,2] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,5,1,2,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,2,1,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3,5] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[4,1,2,5,3] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
[4,1,3,2,5] => [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
Mp00065: Permutations permutation posetPosets
St001964: Posets ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[2,1] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1} - 1
[1,3,2] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1} - 1
[2,1,3] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1} - 1
[2,3,1] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1} - 1
[3,1,2] => [1,3,2] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[3,2,1] => [1,3,2] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[1,2,3,4] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[1,2,4,3] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[1,3,2,4] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[1,3,4,2] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3] => [1,2,4,3] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[1,4,3,2] => [1,2,4,3] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[2,1,3,4] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[2,1,4,3] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,4] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[2,3,4,1] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[2,4,1,3] => [1,2,4,3] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[2,4,3,1] => [1,2,4,3] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[3,1,2,4] => [1,3,2,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,1,4,2] => [1,3,4,2] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[3,2,1,4] => [1,3,2,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,4,1] => [1,3,4,2] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[3,4,1,2] => [1,3,2,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,2,1] => [1,3,2,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,1,2,3] => [1,4,3,2] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[4,1,3,2] => [1,4,2,3] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[4,2,1,3] => [1,4,3,2] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[4,2,3,1] => [1,4,2,3] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[4,3,1,2] => [1,4,2,3] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[4,3,2,1] => [1,4,2,3] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2} - 1
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,2,4,3,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,2,4,5,3] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,2,5,4,3] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,2,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,3,2,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,3,4,5,2] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,5,4,2] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,2,3,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,2,5,3] => [1,2,4,5,3] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,3,2,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,3,5,2] => [1,2,4,5,3] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,5,2,3] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,5,3,2] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,2,3,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,2,4,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,3,2,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,3,4,2] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,4,2,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,4,3,2] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,1,3,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,1,4,5,3] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,1,5,3,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,5,4,3] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,3,1,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,3,1,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,3,4,1,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,3,4,5,1] => [1,2,3,4,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,3,5,4,1] => [1,2,3,5,4] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,1,3,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,1,5,3] => [1,2,4,5,3] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,3,1,5] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,3,5,1] => [1,2,4,5,3] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,5,1,3] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,5,3,1] => [1,2,4,3,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,1,3,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,1,4,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,3,1,4] => [1,2,5,4,3] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,3,4,1] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,4,1,3] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,4,3,1] => [1,2,5,3,4] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,2,4,5] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,1,2,5,4] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,1,4,2,5] => [1,3,4,2,5] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,5,2] => [1,3,4,5,2] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,1,5,2,4] => [1,3,5,4,2] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,5,4,2] => [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,1,4,5] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,2,1,5,4] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,2,4,1,5] => [1,3,4,2,5] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,2,4,5,1] => [1,3,4,5,2] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,2,5,1,4] => [1,3,5,4,2] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,5,4,1] => [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[3,4,1,2,5] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,4,1,5,2] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,4,2,1,5] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,4,2,5,1] => [1,3,2,4,5] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1 = 2 - 1
[3,5,4,1,2] => [1,3,4,2,5] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,2,1] => [1,3,4,2,5] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[4,1,3,2,5] => [1,4,2,3,5] => [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
Description
The interval resolution global dimension of a poset. This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Mp00252: Permutations restrictionPermutations
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 50%
Values
[1] => [] => []
=> ?
=> ? = 1
[1,2] => [1] => [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1}
[1,3,2] => [1,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1}
[2,1,3] => [2,1] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1}
[2,3,1] => [2,1] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1}
[3,1,2] => [1,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1}
[3,2,1] => [2,1] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1}
[1,2,3,4] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,2,4,3] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,4,2,3] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,3,1,4] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,3,4,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[2,4,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,1,2,4] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,1,4,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,2,1,4] => [3,2,1] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,2,4,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,4,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[3,4,2,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,1,2,3] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[4,3,2,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[1,2,3,4,5] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,3,5,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,4,3,5] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,4,5,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,3,4] => [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,2,4,5] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,2,5,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[4,3,2,1,5] => [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 2
[4,3,2,5,1] => [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 2
[4,3,5,2,1] => [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 2
[4,5,3,2,1] => [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 2
[5,4,3,2,1] => [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,3,2,6] => [1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,3,6,2] => [1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,6,3,2] => [1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,6,4,3,2] => [1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,6,5,4,3,2] => [1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,5,4,3,6] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,5,4,6,3] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,5,6,4,3] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,1,6,5,4,3] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,1,4,3,6] => [2,5,1,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,1,4,6,3] => [2,5,1,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,1,6,4,3] => [2,5,1,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,4,1,3,6] => [2,5,4,1,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,4,1,6,3] => [2,5,4,1,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,4,3,1,6] => [2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,5,4,3,6,1] => [2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,5,4,6,1,3] => [2,5,4,1,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,4,6,3,1] => [2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,5,6,1,4,3] => [2,5,1,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,6,4,1,3] => [2,5,4,1,3] => [2,2,1]
=> [2,1]
=> 1
[2,5,6,4,3,1] => [2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> 2
[2,6,1,5,4,3] => [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,6,5,1,4,3] => [2,5,1,4,3] => [2,2,1]
=> [2,1]
=> 1
[2,6,5,4,1,3] => [2,5,4,1,3] => [2,2,1]
=> [2,1]
=> 1
[2,6,5,4,3,1] => [2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> 2
[3,1,5,4,2,6] => [3,1,5,4,2] => [2,2,1]
=> [2,1]
=> 1
[3,1,5,4,6,2] => [3,1,5,4,2] => [2,2,1]
=> [2,1]
=> 1
[3,1,5,6,4,2] => [3,1,5,4,2] => [2,2,1]
=> [2,1]
=> 1
[3,1,6,5,4,2] => [3,1,5,4,2] => [2,2,1]
=> [2,1]
=> 1
[3,2,1,5,4,6] => [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,1,5,6,4] => [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,1,6,5,4] => [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,5,1,4,6] => [3,2,5,1,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,5,1,6,4] => [3,2,5,1,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,5,4,1,6] => [3,2,5,4,1] => [2,2,1]
=> [2,1]
=> 1
[3,2,5,4,6,1] => [3,2,5,4,1] => [2,2,1]
=> [2,1]
=> 1
[3,2,5,6,1,4] => [3,2,5,1,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,5,6,4,1] => [3,2,5,4,1] => [2,2,1]
=> [2,1]
=> 1
[3,2,6,1,5,4] => [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,6,5,1,4] => [3,2,5,1,4] => [2,2,1]
=> [2,1]
=> 1
[3,2,6,5,4,1] => [3,2,5,4,1] => [2,2,1]
=> [2,1]
=> 1
[3,5,1,4,2,6] => [3,5,1,4,2] => [2,2,1]
=> [2,1]
=> 1
[3,5,1,4,6,2] => [3,5,1,4,2] => [2,2,1]
=> [2,1]
=> 1
[3,5,1,6,4,2] => [3,5,1,4,2] => [2,2,1]
=> [2,1]
=> 1
[3,5,2,1,4,6] => [3,5,2,1,4] => [2,2,1]
=> [2,1]
=> 1
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001097: Integer partitions ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[2,1] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1}
[2,3,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1}
[3,1,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1}
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1}
[1,2,3,4] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,3,2,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,3,2,5,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,3,5,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[4,5,3,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,1,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,2,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,3,2,1,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,3,2,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,3,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,4,1,3,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,4,2,1,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,4,2,3,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,4,3,1,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[5,4,3,2,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[1,2,6,5,4,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,3,6,5,4,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,4,6,5,3,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,5,4,3,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,5,4,3,6,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,5,4,6,3,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,5,6,4,3,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,2,5,4,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,3,5,4,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,4,3,2,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,4,3,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,4,5,3,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,5,2,4,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,5,3,2,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,5,3,4,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,5,4,2,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,6,5,4,3,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 6
[2,1,6,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[2,3,6,5,4,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,4,6,5,3,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,5,4,3,1,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,5,4,3,6,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,5,4,6,3,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,5,6,4,3,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,6,1,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[2,6,3,5,4,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,6,4,3,1,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,6,4,3,5,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,6,4,5,3,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,6,5,1,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[2,6,5,3,1,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,6,5,3,4,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
Description
The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1]. This statistic records the coefficient of the monomial symmetric function $m_\lambda$ in the formal group law for linear orders, with generating function $f(x) = x/(1-x)$, see [1, sec. 3.4]. This statistic gives the number of Smirnov arrangements of a set of letters with $\lambda_i$ of the $i$th letter, where a Smirnov word is a word with no repeated adjacent letters. e.g., [3,2,1] = > 10 since there are 10 Smirnov rearrangements of the word 'aaabbc': 'ababac', 'ababca', 'abacab', 'abacba', 'abcaba', 'acabab', 'acbaba', 'babaca', 'bacaba', 'cababa'.
Mp00065: Permutations permutation posetPosets
Mp00307: Posets promotion cycle typeInteger partitions
St000318: Integer partitions ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> 2 = 1 + 1
[1,2] => ([(0,1)],2)
=> [1]
=> 2 = 1 + 1
[2,1] => ([],2)
=> [2]
=> 2 = 1 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [1]
=> 2 = 1 + 1
[1,3,2] => ([(0,1),(0,2)],3)
=> [2]
=> 2 = 1 + 1
[2,1,3] => ([(0,2),(1,2)],3)
=> [2]
=> 2 = 1 + 1
[2,3,1] => ([(1,2)],3)
=> [3]
=> 2 = 1 + 1
[3,1,2] => ([(1,2)],3)
=> [3]
=> 2 = 1 + 1
[3,2,1] => ([],3)
=> [3,3]
=> 2 = 1 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [1]
=> 2 = 1 + 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> [2]
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> 2 = 1 + 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 2 = 1 + 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 2 = 1 + 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> 2 = 1 + 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 2 = 1 + 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 2 = 1 + 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 2 = 1 + 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> [4]
=> 2 = 1 + 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 3 = 2 + 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> [8]
=> 2 = 1 + 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 2 = 1 + 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 3 = 2 + 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> 2 = 1 + 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> [8]
=> 2 = 1 + 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> [4,2]
=> 3 = 2 + 1
[3,4,2,1] => ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {1,2,2,2} + 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> [4]
=> 2 = 1 + 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> [8]
=> 2 = 1 + 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> [8]
=> 2 = 1 + 1
[4,2,3,1] => ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {1,2,2,2} + 1
[4,3,1,2] => ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {1,2,2,2} + 1
[4,3,2,1] => ([],4)
=> [4,4,4,4,4,4]
=> ? ∊ {1,2,2,2} + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> 2 = 1 + 1
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> 2 = 1 + 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> 2 = 1 + 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 2 = 1 + 1
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 2 = 1 + 1
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> 2 = 1 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> 2 = 1 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> 2 = 1 + 1
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 2 = 1 + 1
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 2 = 1 + 1
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 3 = 2 + 1
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> 2 = 1 + 1
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 2 = 1 + 1
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 3 = 2 + 1
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 2 = 1 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> 2 = 1 + 1
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> 3 = 2 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 2 = 1 + 1
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> 2 = 1 + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> 2 = 1 + 1
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 2 = 1 + 1
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,4,5,2,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,5,2,1,4] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[3,5,4,2,1] => ([(2,3),(2,4)],5)
=> [10,10,10,10]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,4,4,4,4,4]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,3,5,2,1] => ([(2,4),(3,4)],5)
=> [10,10,10,10]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[4,5,3,2,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[5,1,3,4,2] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[5,2,3,4,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
[5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} + 1
Description
The number of addable cells of the Ferrers diagram of an integer partition.
Mp00159: Permutations Demazure product with inversePermutations
Mp00209: Permutations pattern posetPosets
St001532: Posets ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 33%
Values
[1] => [1] => ([],1)
=> 1
[1,2] => [1,2] => ([(0,1)],2)
=> 1
[2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,3,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,1,2] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[1,3,4,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,4,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,4,3,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[2,3,1,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,3,4,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[2,4,1,3] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
[2,4,3,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3,1,4,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[3,2,1,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[3,4,1,2] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,4,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,2,3] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[4,1,3,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[4,2,1,3] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,2,3,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,1,2] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,4,5,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,2,5,4,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,3,5,2] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,2,3,4] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,2,4,3] => [1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,3,2,4] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,3,4,2] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,4,2,3] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,5,4,3,2] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,3,5,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,4,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,4,5,3] => [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,5,3,4] => [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,1,5,4,3] => [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,1,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,1,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,4,1,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,4,5,1] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,5,1,4] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,3,5,4,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,1,3,5] => [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,1,5,3] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,3,1,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,3,5,1] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,5,1,3] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,4,5,3,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,1,3,4] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,1,4,3] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,3,1,4] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,3,4,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,4,1,3] => [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[2,5,4,3,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,2,5,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,4,2,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,4,5,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,5,2,4] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,1,5,4,2] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[3,4,5,1,2] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,4,5,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,1,4,2] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,2,4,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,1,2] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,5,1,3] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,5,3,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,5,1,2] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,5,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,2,3] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,3,2] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,1,3] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
Description
The leading coefficient of the Poincare polynomial of the poset cone. For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$. Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$. This statistic records its leading coefficient.
The following 108 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000914The sum of the values of the Möbius function of a poset. St001877Number of indecomposable injective modules with projective dimension 2. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001128The exponens consonantiae of a partition. St000260The radius of a connected graph. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001568The smallest positive integer that does not appear twice in the partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001820The size of the image of the pop stack sorting operator. St001846The number of elements which do not have a complement in the lattice. St001862The number of crossings of a signed permutation. St001587Half of the largest even part of an integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000068The number of minimal elements in a poset. St000454The largest eigenvalue of a graph if it is integral. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001621The number of atoms of a lattice. St001095The number of non-isomorphic posets with precisely one further covering relation. St001845The number of join irreducibles minus the rank of a lattice. St001864The number of excedances of a signed permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001875The number of simple modules with projective dimension at most 1. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001330The hat guessing number of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001866The nesting alignments of a signed permutation. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001490The number of connected components of a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001867The number of alignments of type EN of a signed permutation. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001779The order of promotion on the set of linear extensions of a poset. St000632The jump number of the poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000455The second largest eigenvalue of a graph if it is integral. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001768The number of reduced words of a signed permutation. St001520The number of strict 3-descents. St001556The number of inversions of the third entry of a permutation. St001821The sorting index of a signed permutation. St001823The Stasinski-Voll length of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001946The number of descents in a parking function. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St000095The number of triangles of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000322The skewness of a graph. St000449The number of pairs of vertices of a graph with distance 4. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St001765The number of connected components of the friends and strangers graph. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$.