searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000763
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
St000763: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,1] => 1
[2] => 1
[1,1,1] => 1
[1,2] => 3
[2,1] => 1
[3] => 1
[1,1,1,1] => 1
[1,1,2] => 4
[1,2,1] => 3
[1,3] => 3
[2,1,1] => 1
[2,2] => 1
[3,1] => 1
[4] => 1
[1,1,1,1,1] => 1
[1,1,1,2] => 5
[1,1,2,1] => 4
[1,1,3] => 4
[1,2,1,1] => 3
[1,2,2] => 3
[1,3,1] => 3
[1,4] => 3
[2,1,1,1] => 1
[2,1,2] => 1
[2,2,1] => 1
[2,3] => 3
[3,1,1] => 1
[3,2] => 1
[4,1] => 1
[5] => 1
[1,1,1,1,1,1] => 1
[1,1,1,1,2] => 6
[1,1,1,2,1] => 5
[1,1,1,3] => 5
[1,1,2,1,1] => 4
[1,1,2,2] => 4
[1,1,3,1] => 4
[1,1,4] => 4
[1,2,1,1,1] => 3
[1,2,1,2] => 3
[1,2,2,1] => 3
[1,2,3] => 6
[1,3,1,1] => 3
[1,3,2] => 3
[1,4,1] => 3
[1,5] => 3
[2,1,1,1,1] => 1
[2,1,1,2] => 1
[2,1,2,1] => 1
Description
The sum of the positions of the strong records of an integer composition.
A strong record is an element $a_i$ such that $a_i > a_j$ for all $j < i$. This statistic is the sum of the positions of the strong records.
Matching statistic: St001880
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 45%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 45%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 1
[1,1] => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1}
[2] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
[1,1,1] => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1}
[2,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1}
[3] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1,1}
[1,1,1,1] => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,2] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,3}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,3}
[2,1,1] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {1,1,1,1,1,3}
[2,2] => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,3}
[3,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,3}
[4] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3}
[1,1,1,1,1] => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[1,1,3] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[1,2,2] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,4] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[2,3] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[3,1,1] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[3,2] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[4,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[5] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,4,4}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,1,4] => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,5] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1,1] => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[2,2,2] => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,4] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[3,1,1,1] => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[3,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[3,3] => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[4,1,1] => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[4,2] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[5,1] => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[6] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,4,4,5,5,6}
[1,1,1,1,1,1,1] => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[1,1,1,1,1,2] => [5,1] => [[5,5],[4]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,1,1,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,1,1,3] => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,1,2,1,1] => [3,1,2] => [[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,2,1,2,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,1,3] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,5,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,3,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,4] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[3,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,1,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[4,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[4,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,1,3,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,1,4] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,5] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,1,2,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,1,3] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,4] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,4,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,3] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,5,2] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[1,6,1] => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,2,1,2] => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,1,2,3] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,3,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000782
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 9% ●values known / values provided: 16%●distinct values known / distinct values provided: 9%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 9% ●values known / values provided: 16%●distinct values known / distinct values provided: 9%
Values
[1] => [1] => [1,0]
=> [(1,2)]
=> ? = 1
[1,1] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? ∊ {1,1}
[2] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {1,1}
[1,1,1] => [3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 1
[1,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3}
[2,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3}
[3] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {1,1,3}
[1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> ? ∊ {1,1,3,3,4}
[1,1,2] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3,3,4}
[2,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[2,2] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? ∊ {1,1,3,3,4}
[3,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3,3,4}
[4] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {1,1,3,3,4}
[1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[1,1,3] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[1,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[2,3] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[3,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[3,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[4,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[5] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {1,1,3,3,3,3,3,4,4,5}
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,4] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,1,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,2,2] => [3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 1
[2,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,4] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,3] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[4,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[4,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[5,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[6] => [1] => [1,0]
=> [(1,2)]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,1,2,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,1,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,2,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,2,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,5] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,3] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,1,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,3] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[2,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[3,3,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[4,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[4,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[5,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,1,6] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,5] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,6,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,1,5] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,4] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[2,3,3] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[2,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,5,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,1,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,3,2] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[3,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
Description
The indicator function of whether a given perfect matching is an L & P matching.
An L&P matching is built inductively as follows:
starting with either a single edge, or a hairpin $([1,3],[2,4])$, insert a noncrossing matching or inflate an edge by a ladder, that is, a number of nested edges.
The number of L&P matchings is (see [thm. 1, 2])
$$\frac{1}{2} \cdot 4^{n} + \frac{1}{n + 1}{2 \, n \choose n} - {2 \, n + 1 \choose n} + {2 \, n - 1 \choose n - 1}$$
Matching statistic: St000777
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> 1
[2] => ([],2)
=> ([],2)
=> ? = 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
[1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {1,1}
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3
[3] => ([],3)
=> ([],3)
=> ? ∊ {1,1}
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,1,4}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 3
[1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,1,4}
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,4}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,1,4}
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,3,4,4,5}
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,3,4,4,5}
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,3,4,4,5}
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,3,4,4,5}
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,3,4,4,5}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 3
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,4,4,5}
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,4,4,5}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,3,4,4,5}
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,5] => ([(4,5)],6)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[6] => ([],6)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6}
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 3
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 3
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 3
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 3
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,6] => ([(5,6)],7)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 3
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St000259
Values
[1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> 0 = 1 - 1
[2] => ([],2)
=> ([],2)
=> ? = 1 - 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 0 = 1 - 1
[1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {1,1} - 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[3] => ([],3)
=> ([],3)
=> ? ∊ {1,1} - 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,1,4} - 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,1,4} - 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,4} - 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,1,4} - 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,3,4,4,5} - 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5] => ([(4,5)],6)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 0 = 1 - 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[6] => ([],6)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,3,4,4,4,4,4,5,5,6,6} - 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,6] => ([(5,6)],7)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 0 = 1 - 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8} - 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St001330
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> 1
[2] => ([],2)
=> ([],2)
=> 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2] => ([(1,2)],3)
=> ([],2)
=> 1
[2,1] => ([(0,2),(1,2)],3)
=> ([],1)
=> 1
[3] => ([],3)
=> ([],3)
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3] => ([(2,3)],4)
=> ([],3)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> ([],2)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4] => ([],4)
=> ([],4)
=> 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4] => ([(3,4)],5)
=> ([],4)
=> 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,3,3}
[2,3] => ([(2,4),(3,4)],5)
=> ([],3)
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
[5] => ([],5)
=> ([],5)
=> 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 3
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,5] => ([(4,5)],6)
=> ([],5)
=> 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[2,4] => ([(3,5),(4,5)],6)
=> ([],4)
=> 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,6}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> 1
[6] => ([],6)
=> ([],6)
=> 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(4,5)],6)
=> 3
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,7,8}
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000456
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1}
[2] => ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,3}
[1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,3}
[3] => ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3}
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,4}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,4}
[1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,3,3,4}
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,3,3,4}
[4] => ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3,3,4}
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[5] => ([],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,3,3,3,3,4,4,5}
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[6] => ([],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,4,4,5,5,6,6}
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,8}
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,6] => ([(5,6)],7)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,5] => ([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001877
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 10%●distinct values known / distinct values provided: 9%
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 10%●distinct values known / distinct values provided: 9%
Values
[1] => [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 1
[1,1] => [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
[2] => [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
[1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[1,2] => [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[2,1] => [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[3] => [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,3] => [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,3,3,4}
[3,1] => [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[4] => [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,4] => [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[4,1] => [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[5] => [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,5] => [[5,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[5,1] => [[5,5],[4]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,2,3] => [[4,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,3,2] => [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,4,2] => [[5,4,1],[3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,4,1] => [[5,5,2],[4,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,4] => [[6,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[4,2,1] => [[5,5,4],[4,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[4,3] => [[6,4],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,1,3,2] => [[4,3,1,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,4,1,2] => [[5,4,4,1],[3,3]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,4,1,1] => [[5,5,5,2],[4,4,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,1,1,3] => [[5,3,3,3],[2,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001875
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 27%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 27%
Values
[1] => [1] => [[1],[]]
=> ([],1)
=> ? = 1
[1,1] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {1,1}
[2] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
[1,1,1] => [3] => [[3],[]]
=> ([],1)
=> ? ∊ {1,1,1,3}
[1,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,3}
[2,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,3}
[3] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1,1,3}
[1,1,1,1] => [4] => [[4],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,1,2] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,2,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[2,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[2,2] => [2] => [[2],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[3,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[4] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,3,3,4}
[1,1,1,1,1] => [5] => [[5],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,1,2] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,2,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,3] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,2,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,2,2] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,3,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,4] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[2,1,1,1] => [1,3] => [[3,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[2,1,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[2,2,1] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[2,3] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[3,1,1] => [1,2] => [[2,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[3,2] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[4,1] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[5] => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,1,1,1,1] => [6] => [[6],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,1,2] => [4,1] => [[4,4],[3]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,3] => [3,1] => [[3,3],[2]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,2,1,1] => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,2,2] => [2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,4] => [2,1] => [[2,2],[1]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,1,1,1] => [1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,1,2] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,2,1] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,3] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,3,1,1] => [1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,3,2] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,4,1] => [1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,5] => [1,1] => [[1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,1,1,1] => [1,4] => [[4,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,1,2] => [1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,2,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,2,2,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,2,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,2,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,2,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,1,1] => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
[1,2,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1,1] => [1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1,1,2] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,1,2,1,1,1] => [4,1,3] => [[6,4,4],[3,3]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,1,2,2,1] => [4,2,1] => [[5,5,4],[4,3]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,2,1,1,2] => [3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,1,2,2,1,1] => [3,2,2] => [[5,4,3],[3,2]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,1,2,2,2] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,3,1,1,1] => [3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,2,1,1,1,2] => [2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,1,2,1,1,2,1] => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,1,2,1,1,3] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,1,1,1] => [2,2,3] => [[5,3,2],[2,1]]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
[1,1,2,2,1,2] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,2,2,2,1] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,2,2,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,1,3,1,1,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,3,3,1] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,1,1,1,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,2,1,1,2,2] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,1,1,3,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1,1,1] => [1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,2,1,1,2] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[1,2,2,2,1,1] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,3,1,1,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,3,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,1,1,2,1,1] => [1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[2,1,1,1,2,2] => [1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,1,2,1,1,1] => [1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,1,2,2,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[2,1,1,3,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,1,2,2,1,1] => [1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1,1,1,2] => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[2,2,1,1,2,1] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,1,1,3] => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[2,2,2,1,1,1] => [3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
[3,1,1,2,1,1] => [1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,1,1,2,2] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[3,2,2,1,1] => [1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000284
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 9%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 9%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 1
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,1}
[2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,1}
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,3}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {1,1,3}
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,3}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,3,3,4}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,3,3,4}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,3,3,4}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,3,3,4}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,3,3,4}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,3,3,4}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,4,4,5}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6,6}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,5] => ([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 1
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 1
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 1
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001128The exponens consonantiae of a partition. St001902The number of potential covers of a poset. St000454The largest eigenvalue of a graph if it is integral. St000264The girth of a graph, which is not a tree. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!