Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 74 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001096
St001096: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 1
[2,1] => 1
[1,2,3] => 2
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 2
[1,2,3,4] => 3
[1,2,4,3] => 1
[1,3,2,4] => 2
[1,3,4,2] => 1
[1,4,2,3] => 2
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 1
[2,4,1,3] => 2
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 2
[3,4,1,2] => 2
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 1
[4,3,2,1] => 3
[1,2,3,4,5] => 4
[1,2,3,5,4] => 1
[1,2,4,3,5] => 2
[1,2,4,5,3] => 1
[1,2,5,3,4] => 2
[1,2,5,4,3] => 1
[1,3,2,4,5] => 2
[1,3,2,5,4] => 2
[1,3,4,2,5] => 2
[1,3,4,5,2] => 1
[1,3,5,2,4] => 2
[1,3,5,4,2] => 1
[1,4,2,3,5] => 2
[1,4,2,5,3] => 2
[1,4,3,2,5] => 2
[1,4,3,5,2] => 1
[1,4,5,2,3] => 2
Description
The size of the overlap set of a permutation. For a permutation $\pi\in\mathfrak S_n$ this is the number of indices $i < n$ such that the standardisation of $\pi_1\dots\pi_{n-i}$ equals the standardisation of $\pi_{i+1}\dots\pi_n$. In particular, for $n > 1$, the statistic is at least one, because the standardisations of $\pi_1$ and $\pi_n$ are both $1$. For example, for $\pi=2143$, the standardisations of $21$ and $43$ are equal, and so are the standardisations of $2$ and $3$. Thus, the statistic on $\pi$ is $2$.
Mp00223: Permutations runsortPermutations
Mp00088: Permutations Kreweras complementPermutations
Mp00160: Permutations graph of inversionsGraphs
St000260: Graphs ⟶ ℤResult quality: 50% values known / values provided: 83%distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[2,1] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2] => [1,3,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {2,2}
[2,1,3] => [1,3,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {2,2}
[2,3,1] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[3,2,1] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,4,3] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3}
[1,3,2,4] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3,4,2] => [1,3,4,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {2,2,2,2,3,3}
[1,4,2,3] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,4,3,2] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[2,1,3,4] => [1,3,4,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {2,2,2,2,3,3}
[2,1,4,3] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[2,3,1,4] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[2,3,4,1] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3}
[3,1,2,4] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3}
[3,1,4,2] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[3,2,1,4] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[3,2,4,1] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3}
[3,4,1,2] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,3,2] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,3,2,1] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,5,4] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,3,5] => [1,2,4,3,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,3,4] => [1,2,5,3,4] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,2,5,4,3] => [1,2,5,3,4] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,2,5] => [1,3,4,2,5] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,5,2] => [1,3,4,5,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,2,4] => [1,3,5,2,4] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,5,4,2] => [1,3,5,2,4] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,4,2,3,5] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,5,3] => [1,4,2,5,3] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,2,5] => [1,4,2,5,3] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,5,2] => [1,4,2,3,5] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,4,5,3,2] => [1,4,5,2,3] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,5,2,4,3] => [1,5,2,4,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,5,3,2,4] => [1,5,2,4,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,5,3,4,2] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,5,4,2,3] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,5,4,3,2] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,1,3,4,5] => [1,3,4,5,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,5,4] => [1,3,5,2,4] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,4,3,5] => [1,4,2,3,5] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,4,5,3] => [1,4,5,2,3] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[2,1,5,3,4] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,1,5,4,3] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,3,1,4,5] => [1,4,5,2,3] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[2,3,1,5,4] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,3,5,4,1] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,4,5,3,1] => [1,2,4,5,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,5,1,4,3] => [1,4,2,5,3] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,5,3,1,4] => [1,4,2,5,3] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,5,4,1,3] => [1,3,2,5,4] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,2,4,5] => [1,2,4,5,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,4,2,5] => [1,4,2,5,3] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,4,5,1] => [1,2,4,5,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,5,1,4] => [1,4,2,5,3] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,5,4,1,2] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,5,4,2,1] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,2,3,5] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,3,2,5] => [1,3,2,5,4] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,2,3,5,1] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,2,5,1,3] => [1,3,2,5,4] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,3,5,1,2] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,3,5,2,1] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,5,6,4] => [1,2,3,5,6,4] => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [2,3,5,4,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,4,5,6,3] => [1,2,4,5,6,3] => [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,5,3,6,4] => [1,2,5,3,6,4] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,5,4,3,6] => [1,2,5,3,6,4] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,2,4,6,5] => [1,3,2,4,6,5] => [2,4,3,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,2,5,6,4] => [1,3,2,5,6,4] => [2,4,3,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,4,2,6,5] => [1,3,4,2,6,5] => [2,5,3,4,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,4,5,6,2] => [1,3,4,5,6,2] => [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,5,2,6,4] => [1,3,5,2,6,4] => [2,5,3,1,4,6] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,5,4,2,6] => [1,3,5,2,6,4] => [2,5,3,1,4,6] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,2,3,6,5] => [1,4,2,3,6,5] => [2,4,5,3,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,2,5,6,3] => [1,4,2,5,6,3] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,2,5,6] => [1,4,2,5,6,3] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,6,5,2] => [1,4,2,3,6,5] => [2,4,5,3,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,5,2,6,3] => [1,4,5,2,6,3] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,5,3,2,6] => [1,4,5,2,6,3] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St000955
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000955: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 82%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,1] => [2]
=> []
=> []
=> ? = 1
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,1,3] => [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {1,2}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {1,2}
[3,2,1] => [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,3,3}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,3,3}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,3,3}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 2
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,3,3}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,3,3}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {1,1,1,1,3,3}
[4,3,2,1] => [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
Description
Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St000755: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 81%distinct values known / distinct values provided: 50%
Values
[1] => [1,0]
=> []
=> ?
=> ? = 0
[1,2] => [1,0,1,0]
=> [1]
=> [1]
=> 1
[2,1] => [1,1,0,0]
=> []
=> ?
=> ? = 1
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,1,1]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [2]
=> 2
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,1]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {1,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [3,1,1,1]
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [4,1]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [3,2]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [2,1,1]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [2,1]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [2,1]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [3,1,1]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [4]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [3,1]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,1,1]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [2]
=> 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [2]
=> 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [3]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [3]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,3,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,3,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,3,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,3,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,3,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,3,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,1,1,1,1,1,1,1]
=> 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [6,1,1,1]
=> 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [4,1,1,1,1,1]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [4,3,1]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [4,1,1,1]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [4,1,1,1]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,2,1,1,1,1]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [6,2]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1,1,1,1,1]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [3,2,1,1]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [4,2]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [4,2]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [2,1,1,1,1,1]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [3,2,1]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [2,1,1,1,1,1]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [3,2,1]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [2,1,1,1]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [2,1,1,1]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [2,2]
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,1,1,1,1,1,1]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [6,1,1]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [4,1,1,1,1]
=> 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [5,3,1,1,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [8,3,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [6,5,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [6,1,1,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [5,4,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [8,4,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [5,3,2,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [8,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [6,5,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [5,2,1,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [5,3,1,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [8,3,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,5,4,6] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [6,5,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,4,3,5,6] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> [5,4,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,1,4,5,6] => [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> [5,3,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial. For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001568: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 78%distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1,0]
=> []
=> ? = 0
[1,2] => [1,2] => [1,0,1,0]
=> [1]
=> ? ∊ {1,1}
[2,1] => [2,1] => [1,1,0,0]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> 2
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 1
[2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> [1]
=> ? ∊ {1,1,1}
[3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1}
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,1}
[1,2,3,4] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 2
[1,2,4,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 2
[1,3,2,4] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 2
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 2
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 2
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 2
[2,1,3,4] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1
[2,3,1,4] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[2,3,4,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[2,4,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[2,4,3,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[3,1,2,4] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[3,1,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[3,2,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[3,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3}
[3,4,2,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,3,3}
[4,1,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3}
[4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3}
[4,2,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3}
[4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3}
[4,3,1,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3}
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3}
[1,2,3,4,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,2,3,5,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,2,4,3,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,2,4,5,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,2,5,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,2,5,4,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,3,2,4,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,3,2,5,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,3,4,2,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,3,4,5,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,3,5,2,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,4,2,3,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,4,2,5,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,4,3,2,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,4,3,5,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,4,5,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,5,2,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,5,2,4,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,5,3,2,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,5,4,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 2
[2,1,3,4,5] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 1
[2,1,3,5,4] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 1
[2,1,4,3,5] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 1
[2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 1
[2,1,5,3,4] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 1
[2,3,1,4,5] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 2
[4,5,1,2,3] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,5,1,3,2] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,5,2,1,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,5,2,3,1] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,5,3,1,2] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,5,3,2,1] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,2,4,3] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,3,2,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,3,4,2] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,4,2,3] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,1,4,3,2] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,1,3,4] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,1,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,3,1,4] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,3,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,4,1,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,2,4,3,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,1,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,1,4,2] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,2,1,4] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,4,1,2] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,3,4,2,1] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,1,2,3] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,1,3,2] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,2,1,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,2,3,1] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,3,1,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[5,6,1,2,3,4] => [5,6,1,4,3,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[5,6,1,2,4,3] => [5,6,1,4,3,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[5,6,1,3,2,4] => [5,6,1,4,3,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[5,6,1,3,4,2] => [5,6,1,4,3,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[5,6,1,4,2,3] => [5,6,1,4,3,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[5,6,1,4,3,2] => [5,6,1,4,3,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
Description
The smallest positive integer that does not appear twice in the partition.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 67% values known / values provided: 77%distinct values known / distinct values provided: 67%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([],2)
=> ? = 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,2,2}
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,2,2}
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,2,2}
[2,3,1] => [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,1,2] => [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[1,2,4,3] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[1,3,2,4] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[2,3,1,4] => [2,4,1,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,3,4,1] => [2,4,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [2,4,1,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,4,3,1] => [2,4,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [3,1,4,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => [3,1,4,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3}
[3,2,4,1] => [3,2,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,4,1,2] => [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [3,4,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [4,1,3,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => [4,1,3,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,1,3] => [4,2,1,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [4,3,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,4,3,5] => [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,3,1,4,5] => [2,5,1,4,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,4,1,5] => [2,5,4,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => [2,5,4,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,5,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,1,3,5] => [2,5,1,4,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => [2,5,1,4,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,3,1,5] => [2,5,4,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,3,5,1] => [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [2,5,4,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,5,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,1,3,4] => [2,5,1,4,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,1,4,3] => [2,5,1,4,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,3,1,4] => [2,5,4,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,5,3,4,1] => [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => [2,5,4,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,5,4,3,1] => [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,2,4,5] => [3,1,5,4,2] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,2,5,4] => [3,1,5,4,2] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,2,5] => [3,1,5,4,2] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,5,2] => [3,1,5,4,2] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,5,2,4] => [3,1,5,4,2] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,5,4,2] => [3,1,5,4,2] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,4,1,5] => [3,2,5,1,4] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,4,5,1] => [3,2,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,5,1,4] => [3,2,5,1,4] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,5,4,1] => [3,2,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,4,1,2,5] => [3,5,1,4,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,1,5,2] => [3,5,1,4,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,4,5,6] => [1,6,5,4,3,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,4,6,5] => [1,6,5,4,3,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,5,4,6] => [1,6,5,4,3,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,5,6,4] => [1,6,5,4,3,2] => [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5}
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 67%distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,1,1,2,2}
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,1,3,4] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 1
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,4,1,3] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 1
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,1,2,4] => [3,1,4,2] => [2,2]
=> [2]
=> 2
[3,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,4,1,2] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,2,3] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,3,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,3,1,2] => [4,3,1,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,3,5,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,4,3,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,5,3,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,4,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,5,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,1,3,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,1,5,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,5,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,3,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,3,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,4,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[3,1,2,4,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,2,5,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,4,2,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,4,5,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,5,2,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,5,4,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2]
=> [2]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 2
[3,2,4,1,5] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 2
[3,2,5,1,4] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,2,5,4,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 2
[3,4,1,2,5] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,4,1,5,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,4,2,1,5] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,4,2,5,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,4,5,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,1,2,4] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,1,4,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,2,1,4] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,5,2,4,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[4,1,2,3,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
[4,1,2,5,3] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
[4,1,3,2,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
Description
The least common multiple of the parts of the partition.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000708: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 67%distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,1,1,2,2}
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,1,3,4] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 1
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,4,1,3] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 1
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,1,2,4] => [3,1,4,2] => [2,2]
=> [2]
=> 2
[3,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,4,1,2] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,2,3] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,3,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,3,1,2] => [4,3,1,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,3,5,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,4,3,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,5,3,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,4,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,5,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,1,3,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,1,5,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,5,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,3,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,3,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,4,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[3,1,2,4,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,2,5,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,4,2,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,4,5,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,5,2,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,5,4,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2]
=> [2]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 2
[3,2,4,1,5] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 2
[3,2,5,1,4] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,2,5,4,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 2
[3,4,1,2,5] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,4,1,5,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,4,2,1,5] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,4,2,5,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,4,5,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,1,2,4] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,1,4,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,2,1,4] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,5,2,4,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[4,1,2,3,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
[4,1,2,5,3] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
[4,1,3,2,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
Description
The product of the parts of an integer partition.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000933: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 67%distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,1,1,2,2}
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,1,3,4] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,4] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 1
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[2,4,1,3] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 1
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,1,2,4] => [3,1,4,2] => [2,2]
=> [2]
=> 2
[3,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[3,4,1,2] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,2,3] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,1,3,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,3,1,2] => [4,3,1,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3}
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,3,5,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,4,3,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,5,3,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 2
[2,3,1,4,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,4,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,5,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,1,3,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,1,5,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,4,5,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,3,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,3,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,5,4,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 1
[3,1,2,4,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,2,5,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,4,2,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,4,5,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,5,2,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,1,5,4,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2]
=> [2]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 2
[3,2,4,1,5] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,2,4,5,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 2
[3,2,5,1,4] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,2,5,4,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 2
[3,4,1,2,5] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,4,1,5,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,4,2,1,5] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,4,2,5,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,4,5,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,1,2,4] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,1,4,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[3,5,2,1,4] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 1
[3,5,2,4,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 1
[4,1,2,3,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
[4,1,2,5,3] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
[4,1,3,2,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 2
Description
The number of multipartitions of sizes given by an integer partition. This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
Matching statistic: St000939
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000939: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 67%distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,1,1,2,2}
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[2,1,3,4] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,4] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 2
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[2,4,1,3] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> 2
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[3,1,2,4] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[3,4,1,2] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> 2
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[4,1,2,3] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[4,1,3,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[4,2,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[4,3,1,2] => [4,3,1,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3}
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,3,5,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,4,3,5] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,3,1,4,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 2
[2,3,1,5,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 2
[2,3,4,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 2
[2,3,5,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 2
[2,4,1,3,5] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 2
[2,4,1,5,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 2
[2,4,3,1,5] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 2
[2,4,5,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 2
[2,5,1,3,4] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 2
[2,5,1,4,3] => [2,5,1,4,3] => [3,1,1]
=> [1,1]
=> 2
[2,5,3,1,4] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 2
[2,5,4,1,3] => [2,5,4,1,3] => [3,1,1]
=> [1,1]
=> 2
[3,1,2,4,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 1
[3,1,2,5,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 1
[3,1,4,2,5] => [3,1,5,4,2] => [3,2]
=> [2]
=> 1
[3,1,4,5,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 1
[3,1,5,2,4] => [3,1,5,4,2] => [3,2]
=> [2]
=> 1
[3,1,5,4,2] => [3,1,5,4,2] => [3,2]
=> [2]
=> 1
[3,2,1,4,5] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[3,2,4,1,5] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 2
[3,2,4,5,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 1
[3,2,5,1,4] => [3,2,5,1,4] => [3,1,1]
=> [1,1]
=> 2
[3,2,5,4,1] => [3,2,5,4,1] => [3,2]
=> [2]
=> 1
[3,4,1,2,5] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 2
[3,4,1,5,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 2
[3,4,2,1,5] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 2
[3,4,2,5,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 2
[3,4,5,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 2
[3,5,1,2,4] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 2
[3,5,1,4,2] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 2
[3,5,2,1,4] => [3,5,2,1,4] => [3,1,1]
=> [1,1]
=> 2
[3,5,2,4,1] => [3,5,2,4,1] => [3,1,1]
=> [1,1]
=> 2
[3,5,4,1,2] => [3,5,4,1,2] => [3,1,1]
=> [1,1]
=> 2
[4,1,2,3,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 1
[4,1,2,5,3] => [4,1,5,3,2] => [3,2]
=> [2]
=> 1
[4,1,3,2,5] => [4,1,5,3,2] => [3,2]
=> [2]
=> 1
Description
The number of characters of the symmetric group whose value on the partition is positive.
The following 64 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000993The multiplicity of the largest part of an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001128The exponens consonantiae of a partition. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St000707The product of the factorials of the parts. St000444The length of the maximal rise of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000815The number of semistandard Young tableaux of partition weight of given shape. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000667The greatest common divisor of the parts of the partition. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001571The Cartan determinant of the integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000456The monochromatic index of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001875The number of simple modules with projective dimension at most 1. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000284The Plancherel distribution on integer partitions. St000681The Grundy value of Chomp on Ferrers diagrams. St000770The major index of an integer partition when read from bottom to top. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000640The rank of the largest boolean interval in a poset. St000454The largest eigenvalue of a graph if it is integral. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000934The 2-degree of an integer partition. St001587Half of the largest even part of an integer partition. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001330The hat guessing number of a graph. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000633The size of the automorphism group of a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001691The number of kings in a graph. St001743The discrepancy of a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000315The number of isolated vertices of a graph. St000907The number of maximal antichains of minimal length in a poset. St001570The minimal number of edges to add to make a graph Hamiltonian. St001060The distinguishing index of a graph.