Your data matches 137 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001537
St001537: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 1
[2,4,3,1] => 0
[3,1,2,4] => 0
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 4
[3,4,2,1] => 1
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 1
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 1
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 4
Description
The number of cyclic crossings of a permutation. The pair $(i,j)$ is a cyclic crossing of a permutation $\pi$ if $i, \pi(j), \pi(i), j$ are cyclically ordered and all distinct, see Section 5 of [1].
Mp00160: Permutations graph of inversionsGraphs
Mp00250: Graphs clique graphGraphs
Mp00157: Graphs connected complementGraphs
St000772: Graphs ⟶ ℤResult quality: 45% values known / values provided: 62%distinct values known / distinct values provided: 45%
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => ([],2)
=> ([],2)
=> ([],2)
=> ? = 0 + 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2,3] => ([],3)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0} + 1
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0} + 1
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0} + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4] => ([],4)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,4} + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2 = 1 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000512: Integer partitions ⟶ ℤResult quality: 45% values known / values provided: 57%distinct values known / distinct values provided: 45%
Values
[1] => [1,0]
=> []
=> ?
=> ? = 0
[1,2] => [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 0
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 2
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [3,2,1]
=> 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [2,2,1]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [3,1,1]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [2,1,1]
=> 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [3,2]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [2,2]
=> 0
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [2,2]
=> 0
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 0
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 0
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,1]
=> 1
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1]
=> 0
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,1]
=> 0
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1]
=> 0
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,1]
=> 0
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,1]
=> 0
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,1]
=> 0
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,3,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
Description
The number of invariant subsets of size 3 when acting with a permutation of given cycle type.
Matching statistic: St000175
Mp00170: Permutations to signed permutationSigned permutations
Mp00194: Signed permutations Foata-Han inverseSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
St000175: Integer partitions ⟶ ℤResult quality: 45% values known / values provided: 49%distinct values known / distinct values provided: 45%
Values
[1] => [1] => [1] => [1]
=> 0
[1,2] => [1,2] => [1,2] => [1,1]
=> 0
[2,1] => [2,1] => [-2,1] => []
=> ? = 0
[1,2,3] => [1,2,3] => [1,2,3] => [1,1,1]
=> 0
[1,3,2] => [1,3,2] => [-3,1,2] => []
=> ? ∊ {0,0,0}
[2,1,3] => [2,1,3] => [-2,1,3] => [1]
=> 0
[2,3,1] => [2,3,1] => [-3,-2,1] => []
=> ? ∊ {0,0,0}
[3,1,2] => [3,1,2] => [3,1,2] => [3]
=> 0
[3,2,1] => [3,2,1] => [2,-3,1] => []
=> ? ∊ {0,0,0}
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> 0
[1,2,4,3] => [1,2,4,3] => [-4,1,2,3] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[1,3,2,4] => [1,3,2,4] => [-3,1,2,4] => [1]
=> 0
[1,3,4,2] => [1,3,4,2] => [-4,-3,1,2] => [4]
=> 0
[1,4,2,3] => [1,4,2,3] => [4,1,2,3] => [4]
=> 0
[1,4,3,2] => [1,4,3,2] => [3,-4,1,2] => [2]
=> 0
[2,1,3,4] => [2,1,3,4] => [-2,1,3,4] => [1,1]
=> 0
[2,1,4,3] => [2,1,4,3] => [-4,-2,1,3] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[2,3,1,4] => [2,3,1,4] => [-3,-2,1,4] => [1]
=> 0
[2,3,4,1] => [2,3,4,1] => [-4,-3,-2,1] => [2]
=> 0
[2,4,1,3] => [2,4,1,3] => [2,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[2,4,3,1] => [2,4,3,1] => [3,-4,-2,1] => [4]
=> 0
[3,1,2,4] => [3,1,2,4] => [3,1,2,4] => [3,1]
=> 1
[3,1,4,2] => [3,1,4,2] => [4,-3,1,2] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[3,2,1,4] => [3,2,1,4] => [2,-3,1,4] => [1]
=> 0
[3,2,4,1] => [3,2,4,1] => [2,-4,-3,1] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[3,4,1,2] => [3,4,1,2] => [3,4,1,2] => [2,2]
=> 0
[3,4,2,1] => [3,4,2,1] => [2,4,-3,1] => [3]
=> 0
[4,1,2,3] => [4,1,2,3] => [1,-4,2,3] => [1]
=> 0
[4,1,3,2] => [4,1,3,2] => [-3,-4,1,2] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[4,2,1,3] => [4,2,1,3] => [-2,-4,1,3] => [4]
=> 0
[4,2,3,1] => [4,2,3,1] => [2,3,-4,1] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[4,3,1,2] => [4,3,1,2] => [-4,3,1,2] => []
=> ? ∊ {0,0,0,0,0,1,1,4}
[4,3,2,1] => [4,3,2,1] => [-3,2,-4,1] => [3,1]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [-5,1,2,3,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,4,3,5] => [1,2,4,3,5] => [-4,1,2,3,5] => [1]
=> 0
[1,2,4,5,3] => [1,2,4,5,3] => [-5,-4,1,2,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,5,3,4] => [1,2,5,3,4] => [5,1,2,3,4] => [5]
=> 0
[1,2,5,4,3] => [1,2,5,4,3] => [4,-5,1,2,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,2,4,5] => [1,3,2,4,5] => [-3,1,2,4,5] => [1,1]
=> 0
[1,3,2,5,4] => [1,3,2,5,4] => [-5,-3,1,2,4] => [5]
=> 0
[1,3,4,2,5] => [1,3,4,2,5] => [-4,-3,1,2,5] => [4,1]
=> 1
[1,3,4,5,2] => [1,3,4,5,2] => [-5,-4,-3,1,2] => [4]
=> 0
[1,3,5,2,4] => [1,3,5,2,4] => [3,-5,1,2,4] => [2]
=> 0
[1,3,5,4,2] => [1,3,5,4,2] => [4,-5,-3,1,2] => [2]
=> 0
[1,4,2,3,5] => [1,4,2,3,5] => [4,1,2,3,5] => [4,1]
=> 1
[1,4,2,5,3] => [1,4,2,5,3] => [5,-4,1,2,3] => [3]
=> 0
[1,4,3,2,5] => [1,4,3,2,5] => [3,-4,1,2,5] => [2,1]
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [3,-5,-4,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,1,2,3] => [5]
=> 0
[1,4,5,3,2] => [1,4,5,3,2] => [3,5,-4,1,2] => [2]
=> 0
[1,5,2,3,4] => [1,5,2,3,4] => [1,-5,2,3,4] => [1]
=> 0
[1,5,2,4,3] => [1,5,2,4,3] => [-4,-5,1,2,3] => [5]
=> 0
[1,5,3,2,4] => [1,5,3,2,4] => [-3,-5,1,2,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,3,4,2] => [1,5,3,4,2] => [3,4,-5,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,4,2,3] => [1,5,4,2,3] => [-5,4,1,2,3] => [2]
=> 0
[1,5,4,3,2] => [1,5,4,3,2] => [-4,3,-5,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,3,4,5] => [2,1,3,4,5] => [-2,1,3,4,5] => [1,1,1]
=> 0
[2,1,3,5,4] => [2,1,3,5,4] => [-5,-2,1,3,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,4,3,5] => [2,1,4,3,5] => [-4,-2,1,3,5] => [1]
=> 0
[2,1,4,5,3] => [2,1,4,5,3] => [-5,-4,-2,1,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,3,4] => [2,1,5,3,4] => [2,-5,1,3,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,4,3] => [2,1,5,4,3] => [4,-5,-2,1,3] => [3,2]
=> 1
[2,3,1,4,5] => [2,3,1,4,5] => [-3,-2,1,4,5] => [1,1]
=> 0
[2,3,1,5,4] => [2,3,1,5,4] => [-5,-3,-2,1,4] => [2]
=> 0
[2,3,4,1,5] => [2,3,4,1,5] => [-4,-3,-2,1,5] => [2,1]
=> 1
[2,3,4,5,1] => [2,3,4,5,1] => [-5,-4,-3,-2,1] => [2]
=> 0
[2,3,5,1,4] => [2,3,5,1,4] => [3,-5,-2,1,4] => [5]
=> 0
[2,3,5,4,1] => [2,3,5,4,1] => [4,-5,-3,-2,1] => [4]
=> 0
[2,4,1,3,5] => [2,4,1,3,5] => [2,-4,1,3,5] => [1]
=> 0
[2,4,1,5,3] => [2,4,1,5,3] => [2,-5,-4,1,3] => [5]
=> 0
[2,4,3,1,5] => [2,4,3,1,5] => [3,-4,-2,1,5] => [4,1]
=> 1
[2,4,3,5,1] => [2,4,3,5,1] => [3,-5,-4,-2,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,1,3] => [2,4,5,1,3] => [2,5,-4,1,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,1,4] => [2,5,3,1,4] => [2,3,-5,1,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,4,1] => [2,5,3,4,1] => [3,4,-5,-2,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,4,3,1] => [2,5,4,3,1] => [-4,3,-5,-2,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,2,5,4] => [3,1,2,5,4] => [5,-3,1,2,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,4,5,2] => [3,1,4,5,2] => [5,-4,-3,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,5,4,2] => [3,1,5,4,2] => [-4,-5,-3,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,2,1,5,4] => [3,2,1,5,4] => [2,-5,-3,1,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,5,2,1] => [3,4,5,2,1] => [2,4,5,-3,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,1,2,4] => [3,5,1,2,4] => [-5,3,1,2,4] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,1,4,2] => [3,5,1,4,2] => [-5,4,-3,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,4,1,2] => [3,5,4,1,2] => [-5,3,4,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,5,2,3] => [4,1,5,2,3] => [-4,5,1,2,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,1,5,3] => [4,2,1,5,3] => [-2,-5,-4,1,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,3,5,1] => [4,2,3,5,1] => [2,3,-5,-4,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,5,1,3,2] => [4,5,1,3,2] => [5,3,-4,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,5,3,2,1] => [4,5,3,2,1] => [-5,-3,2,-4,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,2,1,4,3] => [5,2,1,4,3] => [-2,4,-5,1,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,2,3,4,1] => [5,2,3,4,1] => [2,3,4,-5,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,4,2,1,3] => [5,4,2,1,3] => [2,-4,-5,1,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [-6,1,2,3,4,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [-6,-4,1,2,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
[1,2,4,6,3,5] => [1,2,4,6,3,5] => [4,-6,1,2,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
[1,2,5,3,6,4] => [1,2,5,3,6,4] => [6,-5,1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [-5,-6,1,2,3,4] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
[1,2,6,4,3,5] => [1,2,6,4,3,5] => [-4,-6,1,2,3,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
[1,2,6,5,3,4] => [1,2,6,5,3,4] => [-6,5,1,2,3,4] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial $$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$ The statistic of the degree of this polynomial. For example, the partition $(3, 2, 1, 1, 1)$ gives $$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$ which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$. This is the same as the number of unordered pairs of different parts, which follows from: $$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Mp00277: Permutations catalanizationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00065: Permutations permutation posetPosets
St001964: Posets ⟶ ℤResult quality: 36% values known / values provided: 49%distinct values known / distinct values provided: 36%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 0
[2,1] => [2,1] => [2,1] => ([],2)
=> 0
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[1,3,2] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0}
[2,1,3] => [2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> 0
[2,3,1] => [2,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0}
[3,1,2] => [2,3,1] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,0,0}
[3,2,1] => [3,2,1] => [3,2,1] => ([],3)
=> 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0
[1,3,2,4] => [1,3,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 0
[1,3,4,2] => [1,3,4,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[1,4,2,3] => [1,3,4,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[1,4,3,2] => [1,4,3,2] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1
[2,1,4,3] => [2,1,4,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 0
[2,3,1,4] => [2,3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 0
[2,3,4,1] => [2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0
[2,4,1,3] => [4,3,1,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1
[2,4,3,1] => [2,4,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[3,1,2,4] => [2,3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 0
[3,1,4,2] => [2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => [3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([],4)
=> 0
[3,4,2,1] => [3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[4,1,2,3] => [2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0
[4,1,3,2] => [2,4,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[4,2,1,3] => [3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0
[4,2,3,1] => [3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[4,3,1,2] => [3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,4}
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([],4)
=> 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 0
[1,2,4,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 0
[1,2,4,5,3] => [1,2,4,5,3] => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 0
[1,2,5,3,4] => [1,2,4,5,3] => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 0
[1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0
[1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> 0
[1,3,4,2,5] => [1,3,4,2,5] => [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> 0
[1,3,4,5,2] => [1,3,4,5,2] => [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 0
[1,3,5,2,4] => [1,5,4,2,3] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
[1,3,5,4,2] => [1,3,5,4,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,2,3,5] => [1,3,4,2,5] => [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> 0
[1,4,2,5,3] => [1,3,4,5,2] => [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 0
[1,4,3,2,5] => [1,4,3,2,5] => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 0
[1,4,5,2,3] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,5,3,2] => [1,4,5,3,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,2,3,4] => [1,3,4,5,2] => [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 0
[1,5,2,4,3] => [1,3,5,4,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,3,2,4] => [1,4,3,5,2] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 0
[1,5,3,4,2] => [1,4,5,3,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,4,2,3] => [1,4,5,3,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> 1
[2,1,4,3,5] => [2,1,4,3,5] => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[2,1,4,5,3] => [2,1,4,5,3] => [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,1,5,3,4] => [2,1,4,5,3] => [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,1,5,4,3] => [2,1,5,4,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,1,4,5] => [2,3,1,4,5] => [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[2,3,1,5,4] => [2,3,1,5,4] => [2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 0
[2,3,4,5,1] => [2,3,4,5,1] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0
[2,3,5,1,4] => [2,5,4,1,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0
[2,3,5,4,1] => [2,3,5,4,1] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 0
[2,4,5,1,3] => [3,5,4,1,2] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,3,1] => [2,4,5,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,4,1] => [2,4,5,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,4,3,1] => [2,5,4,3,1] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,2,5,1,4] => [5,2,4,1,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,2,5,4,1] => [3,2,5,4,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,1,5,2] => [4,3,2,5,1] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,5,1,2] => [3,5,4,2,1] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,1,4,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,2,4,1] => [5,4,2,3,1] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,4,2,1] => [3,5,4,2,1] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,5,2,3] => [2,5,4,3,1] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,5,3,2] => [2,4,5,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,2,5,1,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,3,2,5,1] => [4,3,2,5,1] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,3,5,1,2] => [5,3,4,2,1] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,5,1,3,2] => [5,3,4,2,1] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,5,3,2,1] => [4,5,3,2,1] => [4,5,3,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,1,3,4,2] => [2,4,5,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,1,4,2,3] => [2,4,5,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,1,4,3,2] => [2,5,4,3,1] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,2,1,4,3] => [3,2,5,4,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,2,4,1,3] => [5,4,2,3,1] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,2,4,3,1] => [3,5,4,2,1] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,3,2,1,4] => [4,3,2,5,1] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,3,4,2,1] => [4,5,3,2,1] => [4,5,3,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,4,1,3,2] => [3,5,4,2,1] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,4,2,3,1] => [4,5,3,2,1] => [4,5,3,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[5,4,3,1,2] => [4,5,3,2,1] => [4,5,3,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
[1,2,4,6,3,5] => [1,2,6,5,3,4] => [1,6,5,2,3,4] => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12}
Description
The interval resolution global dimension of a poset. This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St001432
Mp00170: Permutations to signed permutationSigned permutations
Mp00194: Signed permutations Foata-Han inverseSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
St001432: Integer partitions ⟶ ℤResult quality: 27% values known / values provided: 49%distinct values known / distinct values provided: 27%
Values
[1] => [1] => [1] => [1]
=> 1 = 0 + 1
[1,2] => [1,2] => [1,2] => [1,1]
=> 1 = 0 + 1
[2,1] => [2,1] => [-2,1] => []
=> ? = 0 + 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,1,1]
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => [-3,1,2] => []
=> ? ∊ {0,0,0} + 1
[2,1,3] => [2,1,3] => [-2,1,3] => [1]
=> 1 = 0 + 1
[2,3,1] => [2,3,1] => [-3,-2,1] => []
=> ? ∊ {0,0,0} + 1
[3,1,2] => [3,1,2] => [3,1,2] => [3]
=> 1 = 0 + 1
[3,2,1] => [3,2,1] => [2,-3,1] => []
=> ? ∊ {0,0,0} + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => [-4,1,2,3] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[1,3,2,4] => [1,3,2,4] => [-3,1,2,4] => [1]
=> 1 = 0 + 1
[1,3,4,2] => [1,3,4,2] => [-4,-3,1,2] => [4]
=> 1 = 0 + 1
[1,4,2,3] => [1,4,2,3] => [4,1,2,3] => [4]
=> 1 = 0 + 1
[1,4,3,2] => [1,4,3,2] => [3,-4,1,2] => [2]
=> 1 = 0 + 1
[2,1,3,4] => [2,1,3,4] => [-2,1,3,4] => [1,1]
=> 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [-4,-2,1,3] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[2,3,1,4] => [2,3,1,4] => [-3,-2,1,4] => [1]
=> 1 = 0 + 1
[2,3,4,1] => [2,3,4,1] => [-4,-3,-2,1] => [2]
=> 1 = 0 + 1
[2,4,1,3] => [2,4,1,3] => [2,-4,1,3] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[2,4,3,1] => [2,4,3,1] => [3,-4,-2,1] => [4]
=> 1 = 0 + 1
[3,1,2,4] => [3,1,2,4] => [3,1,2,4] => [3,1]
=> 2 = 1 + 1
[3,1,4,2] => [3,1,4,2] => [4,-3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[3,2,1,4] => [3,2,1,4] => [2,-3,1,4] => [1]
=> 1 = 0 + 1
[3,2,4,1] => [3,2,4,1] => [2,-4,-3,1] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[3,4,1,2] => [3,4,1,2] => [3,4,1,2] => [2,2]
=> 2 = 1 + 1
[3,4,2,1] => [3,4,2,1] => [2,4,-3,1] => [3]
=> 1 = 0 + 1
[4,1,2,3] => [4,1,2,3] => [1,-4,2,3] => [1]
=> 1 = 0 + 1
[4,1,3,2] => [4,1,3,2] => [-3,-4,1,2] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[4,2,1,3] => [4,2,1,3] => [-2,-4,1,3] => [4]
=> 1 = 0 + 1
[4,2,3,1] => [4,2,3,1] => [2,3,-4,1] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[4,3,1,2] => [4,3,1,2] => [-4,3,1,2] => []
=> ? ∊ {0,0,0,0,0,0,1,4} + 1
[4,3,2,1] => [4,3,2,1] => [-3,2,-4,1] => [3,1]
=> 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [-5,1,2,3,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,4,3,5] => [1,2,4,3,5] => [-4,1,2,3,5] => [1]
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,4,5,3] => [-5,-4,1,2,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,5,3,4] => [1,2,5,3,4] => [5,1,2,3,4] => [5]
=> 1 = 0 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [4,-5,1,2,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,3,2,4,5] => [1,3,2,4,5] => [-3,1,2,4,5] => [1,1]
=> 1 = 0 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [-5,-3,1,2,4] => [5]
=> 1 = 0 + 1
[1,3,4,2,5] => [1,3,4,2,5] => [-4,-3,1,2,5] => [4,1]
=> 2 = 1 + 1
[1,3,4,5,2] => [1,3,4,5,2] => [-5,-4,-3,1,2] => [4]
=> 1 = 0 + 1
[1,3,5,2,4] => [1,3,5,2,4] => [3,-5,1,2,4] => [2]
=> 1 = 0 + 1
[1,3,5,4,2] => [1,3,5,4,2] => [4,-5,-3,1,2] => [2]
=> 1 = 0 + 1
[1,4,2,3,5] => [1,4,2,3,5] => [4,1,2,3,5] => [4,1]
=> 2 = 1 + 1
[1,4,2,5,3] => [1,4,2,5,3] => [5,-4,1,2,3] => [3]
=> 1 = 0 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [3,-4,1,2,5] => [2,1]
=> 2 = 1 + 1
[1,4,3,5,2] => [1,4,3,5,2] => [3,-5,-4,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,1,2,3] => [5]
=> 1 = 0 + 1
[1,4,5,3,2] => [1,4,5,3,2] => [3,5,-4,1,2] => [2]
=> 1 = 0 + 1
[1,5,2,3,4] => [1,5,2,3,4] => [1,-5,2,3,4] => [1]
=> 1 = 0 + 1
[1,5,2,4,3] => [1,5,2,4,3] => [-4,-5,1,2,3] => [5]
=> 1 = 0 + 1
[1,5,3,2,4] => [1,5,3,2,4] => [-3,-5,1,2,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,3,4,2] => [1,5,3,4,2] => [3,4,-5,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,5,4,2,3] => [1,5,4,2,3] => [-5,4,1,2,3] => [2]
=> 1 = 0 + 1
[1,5,4,3,2] => [1,5,4,3,2] => [-4,3,-5,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,3,4,5] => [2,1,3,4,5] => [-2,1,3,4,5] => [1,1,1]
=> 1 = 0 + 1
[2,1,3,5,4] => [2,1,3,5,4] => [-5,-2,1,3,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,4,3,5] => [2,1,4,3,5] => [-4,-2,1,3,5] => [1]
=> 1 = 0 + 1
[2,1,4,5,3] => [2,1,4,5,3] => [-5,-4,-2,1,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,5,3,4] => [2,1,5,3,4] => [2,-5,1,3,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,1,5,4,3] => [2,1,5,4,3] => [4,-5,-2,1,3] => [3,2]
=> 2 = 1 + 1
[2,3,1,4,5] => [2,3,1,4,5] => [-3,-2,1,4,5] => [1,1]
=> 1 = 0 + 1
[2,3,1,5,4] => [2,3,1,5,4] => [-5,-3,-2,1,4] => [2]
=> 1 = 0 + 1
[2,3,4,1,5] => [2,3,4,1,5] => [-4,-3,-2,1,5] => [2,1]
=> 2 = 1 + 1
[2,3,4,5,1] => [2,3,4,5,1] => [-5,-4,-3,-2,1] => [2]
=> 1 = 0 + 1
[2,3,5,1,4] => [2,3,5,1,4] => [3,-5,-2,1,4] => [5]
=> 1 = 0 + 1
[2,3,5,4,1] => [2,3,5,4,1] => [4,-5,-3,-2,1] => [4]
=> 1 = 0 + 1
[2,4,1,3,5] => [2,4,1,3,5] => [2,-4,1,3,5] => [1]
=> 1 = 0 + 1
[2,4,1,5,3] => [2,4,1,5,3] => [2,-5,-4,1,3] => [5]
=> 1 = 0 + 1
[2,4,3,1,5] => [2,4,3,1,5] => [3,-4,-2,1,5] => [4,1]
=> 2 = 1 + 1
[2,4,3,5,1] => [2,4,3,5,1] => [3,-5,-4,-2,1] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,4,5,1,3] => [2,4,5,1,3] => [2,5,-4,1,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,5,3,1,4] => [2,5,3,1,4] => [2,3,-5,1,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,5,3,4,1] => [2,5,3,4,1] => [3,4,-5,-2,1] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[2,5,4,3,1] => [2,5,4,3,1] => [-4,3,-5,-2,1] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,1,2,5,4] => [3,1,2,5,4] => [5,-3,1,2,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,1,4,5,2] => [3,1,4,5,2] => [5,-4,-3,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,1,5,4,2] => [3,1,5,4,2] => [-4,-5,-3,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,2,1,5,4] => [3,2,1,5,4] => [2,-5,-3,1,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,4,5,2,1] => [3,4,5,2,1] => [2,4,5,-3,1] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,5,1,2,4] => [3,5,1,2,4] => [-5,3,1,2,4] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,5,1,4,2] => [3,5,1,4,2] => [-5,4,-3,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[3,5,4,1,2] => [3,5,4,1,2] => [-5,3,4,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[4,1,5,2,3] => [4,1,5,2,3] => [-4,5,1,2,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[4,2,1,5,3] => [4,2,1,5,3] => [-2,-5,-4,1,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[4,2,3,5,1] => [4,2,3,5,1] => [2,3,-5,-4,1] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[4,5,1,3,2] => [4,5,1,3,2] => [5,3,-4,1,2] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[4,5,3,2,1] => [4,5,3,2,1] => [-5,-3,2,-4,1] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[5,2,1,4,3] => [5,2,1,4,3] => [-2,4,-5,1,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[5,2,3,4,1] => [5,2,3,4,1] => [2,3,4,-5,1] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[5,4,2,1,3] => [5,4,2,1,3] => [2,-4,-5,1,3] => []
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5} + 1
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [-6,1,2,3,4,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12} + 1
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [-6,-4,1,2,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12} + 1
[1,2,4,6,3,5] => [1,2,4,6,3,5] => [4,-6,1,2,3,5] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12} + 1
[1,2,5,3,6,4] => [1,2,5,3,6,4] => [6,-5,1,2,3,4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12} + 1
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [-5,-6,1,2,3,4] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12} + 1
[1,2,6,4,3,5] => [1,2,6,4,3,5] => [-4,-6,1,2,3,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12} + 1
[1,2,6,5,3,4] => [1,2,6,5,3,4] => [-6,5,1,2,3,4] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,12} + 1
Description
The order dimension of the partition. Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St001384
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001384: Integer partitions ⟶ ℤResult quality: 36% values known / values provided: 44%distinct values known / distinct values provided: 36%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains.
Matching statistic: St001767
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001767: Integer partitions ⟶ ℤResult quality: 27% values known / values provided: 44%distinct values known / distinct values provided: 27%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
Description
The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. Assign to each cell of the Ferrers diagram an arrow pointing north, east, south or west. Then compute for each cell the number of arrows pointing towards it, and take the minimum of those. This statistic is the maximal minimum that can be obtained by assigning arrows in any way.
Mp00170: Permutations to signed permutationSigned permutations
Mp00167: Signed permutations inverse Kreweras complementSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
St000938: Integer partitions ⟶ ℤResult quality: 36% values known / values provided: 43%distinct values known / distinct values provided: 36%
Values
[1] => [1] => [-1] => []
=> ? = 0
[1,2] => [1,2] => [2,-1] => []
=> ? ∊ {0,0}
[2,1] => [2,1] => [1,-2] => [1]
=> ? ∊ {0,0}
[1,2,3] => [1,2,3] => [2,3,-1] => []
=> ? ∊ {0,0,0,0}
[1,3,2] => [1,3,2] => [3,2,-1] => [1]
=> ? ∊ {0,0,0,0}
[2,1,3] => [2,1,3] => [1,3,-2] => [1]
=> ? ∊ {0,0,0,0}
[2,3,1] => [2,3,1] => [1,2,-3] => [1,1]
=> 0
[3,1,2] => [3,1,2] => [3,1,-2] => []
=> ? ∊ {0,0,0,0}
[3,2,1] => [3,2,1] => [2,1,-3] => [2]
=> 0
[1,2,3,4] => [1,2,3,4] => [2,3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,2,4,3] => [1,2,4,3] => [2,4,3,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,3,2,4] => [1,3,2,4] => [3,2,4,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,3,4,2] => [1,3,4,2] => [4,2,3,-1] => [1,1]
=> 0
[1,4,2,3] => [1,4,2,3] => [3,4,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,4,3,2] => [1,4,3,2] => [4,3,2,-1] => [2]
=> 0
[2,1,3,4] => [2,1,3,4] => [1,3,4,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[2,1,4,3] => [2,1,4,3] => [1,4,3,-2] => [1,1]
=> 0
[2,3,1,4] => [2,3,1,4] => [1,2,4,-3] => [1,1]
=> 0
[2,3,4,1] => [2,3,4,1] => [1,2,3,-4] => [1,1,1]
=> 0
[2,4,1,3] => [2,4,1,3] => [1,4,2,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[2,4,3,1] => [2,4,3,1] => [1,3,2,-4] => [2,1]
=> 1
[3,1,2,4] => [3,1,2,4] => [3,1,4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[3,1,4,2] => [3,1,4,2] => [4,1,3,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[3,2,1,4] => [3,2,1,4] => [2,1,4,-3] => [2]
=> 0
[3,2,4,1] => [3,2,4,1] => [2,1,3,-4] => [2,1]
=> 1
[3,4,1,2] => [3,4,1,2] => [4,1,2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[3,4,2,1] => [3,4,2,1] => [3,1,2,-4] => [3]
=> 0
[4,1,2,3] => [4,1,2,3] => [3,4,1,-2] => [2]
=> 0
[4,1,3,2] => [4,1,3,2] => [4,3,1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[4,2,1,3] => [4,2,1,3] => [2,4,1,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[4,2,3,1] => [4,2,3,1] => [2,3,1,-4] => [3]
=> 0
[4,3,1,2] => [4,3,1,2] => [4,2,1,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[4,3,2,1] => [4,3,2,1] => [3,2,1,-4] => [2,1]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,3,5,4] => [1,2,3,5,4] => [2,3,5,4,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,4,3,5] => [1,2,4,3,5] => [2,4,3,5,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,4,5,3] => [1,2,4,5,3] => [2,5,3,4,-1] => [1,1]
=> 0
[1,2,5,3,4] => [1,2,5,3,4] => [2,4,5,3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,5,4,3] => [1,2,5,4,3] => [2,5,4,3,-1] => [2]
=> 0
[1,3,2,4,5] => [1,3,2,4,5] => [3,2,4,5,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,2,5,4] => [1,3,2,5,4] => [3,2,5,4,-1] => [1,1]
=> 0
[1,3,4,2,5] => [1,3,4,2,5] => [4,2,3,5,-1] => [1,1]
=> 0
[1,3,4,5,2] => [1,3,4,5,2] => [5,2,3,4,-1] => [1,1,1]
=> 0
[1,3,5,2,4] => [1,3,5,2,4] => [4,2,5,3,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,5,4,2] => [1,3,5,4,2] => [5,2,4,3,-1] => [2,1]
=> 1
[1,4,2,3,5] => [1,4,2,3,5] => [3,4,2,5,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,2,5,3] => [1,4,2,5,3] => [3,5,2,4,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,3,2,5] => [1,4,3,2,5] => [4,3,2,5,-1] => [2]
=> 0
[1,4,3,5,2] => [1,4,3,5,2] => [5,3,2,4,-1] => [2,1]
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,2,3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,5,3,2] => [1,4,5,3,2] => [5,4,2,3,-1] => [3]
=> 0
[1,5,2,3,4] => [1,5,2,3,4] => [3,4,5,2,-1] => [2]
=> 0
[1,5,2,4,3] => [1,5,2,4,3] => [3,5,4,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,3,2,4] => [1,5,3,2,4] => [4,3,5,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,3,4,2] => [1,5,3,4,2] => [5,3,4,2,-1] => [3]
=> 0
[1,5,4,2,3] => [1,5,4,2,3] => [4,5,3,2,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,2,-1] => [2,1]
=> 1
[2,1,3,4,5] => [2,1,3,4,5] => [1,3,4,5,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,3,5,4] => [2,1,3,5,4] => [1,3,5,4,-2] => [1,1]
=> 0
[2,1,4,3,5] => [2,1,4,3,5] => [1,4,3,5,-2] => [1,1]
=> 0
[2,1,4,5,3] => [2,1,4,5,3] => [1,5,3,4,-2] => [1,1,1]
=> 0
[2,1,5,3,4] => [2,1,5,3,4] => [1,4,5,3,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,4,3] => [2,1,5,4,3] => [1,5,4,3,-2] => [2,1]
=> 1
[2,3,1,4,5] => [2,3,1,4,5] => [1,2,4,5,-3] => [1,1]
=> 0
[2,3,1,5,4] => [2,3,1,5,4] => [1,2,5,4,-3] => [1,1,1]
=> 0
[2,3,4,1,5] => [2,3,4,1,5] => [1,2,3,5,-4] => [1,1,1]
=> 0
[2,3,4,5,1] => [2,3,4,5,1] => [1,2,3,4,-5] => [1,1,1,1]
=> 0
[2,3,5,1,4] => [2,3,5,1,4] => [1,2,5,3,-4] => [1,1]
=> 0
[2,3,5,4,1] => [2,3,5,4,1] => [1,2,4,3,-5] => [2,1,1]
=> 1
[2,4,1,3,5] => [2,4,1,3,5] => [1,4,2,5,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,1,5,3] => [2,4,1,5,3] => [1,5,2,4,-3] => [1,1]
=> 0
[2,4,3,1,5] => [2,4,3,1,5] => [1,3,2,5,-4] => [2,1]
=> 1
[2,4,3,5,1] => [2,4,3,5,1] => [1,3,2,4,-5] => [2,1,1]
=> 1
[2,4,5,1,3] => [2,4,5,1,3] => [1,5,2,3,-4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,3,1] => [2,4,5,3,1] => [1,4,2,3,-5] => [3,1]
=> 1
[2,5,1,3,4] => [2,5,1,3,4] => [1,4,5,2,-3] => [2,1]
=> 1
[2,5,1,4,3] => [2,5,1,4,3] => [1,5,4,2,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,1,4] => [2,5,3,1,4] => [1,3,5,2,-4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,4,1] => [2,5,3,4,1] => [1,3,4,2,-5] => [3,1]
=> 1
[2,5,4,1,3] => [2,5,4,1,3] => [1,5,3,2,-4] => [1,1]
=> 0
[2,5,4,3,1] => [2,5,4,3,1] => [1,4,3,2,-5] => [2,1,1]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [3,1,4,5,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,2,5,4] => [3,1,2,5,4] => [3,1,5,4,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,4,2,5] => [3,1,4,2,5] => [4,1,3,5,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,4,5,2] => [3,1,4,5,2] => [5,1,3,4,-2] => [1,1]
=> 0
[3,1,5,2,4] => [3,1,5,2,4] => [4,1,5,3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,5,4,2] => [3,1,5,4,2] => [5,1,4,3,-2] => [2]
=> 0
[3,2,1,4,5] => [3,2,1,4,5] => [2,1,4,5,-3] => [2]
=> 0
[3,2,1,5,4] => [3,2,1,5,4] => [2,1,5,4,-3] => [2,1]
=> 1
[3,2,4,1,5] => [3,2,4,1,5] => [2,1,3,5,-4] => [2,1]
=> 1
[3,2,4,5,1] => [3,2,4,5,1] => [2,1,3,4,-5] => [2,1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2,5] => [4,1,2,5,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,1,5,2] => [3,4,1,5,2] => [5,1,2,4,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,5,1,2] => [3,4,5,1,2] => [5,1,2,3,-4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,1,4,2] => [3,5,1,4,2] => [5,1,4,2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,2,1,4] => [3,5,2,1,4] => [3,1,5,2,-4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,4,1,2] => [3,5,4,1,2] => [5,1,3,2,-4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,3,2,5] => [4,1,3,2,5] => [4,3,1,5,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,3,5,2] => [4,1,3,5,2] => [5,3,1,4,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,5,3,2] => [4,1,5,3,2] => [5,4,1,3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
Description
The number of zeros of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Mp00170: Permutations to signed permutationSigned permutations
Mp00167: Signed permutations inverse Kreweras complementSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
St000940: Integer partitions ⟶ ℤResult quality: 36% values known / values provided: 43%distinct values known / distinct values provided: 36%
Values
[1] => [1] => [-1] => []
=> ? = 0
[1,2] => [1,2] => [2,-1] => []
=> ? ∊ {0,0}
[2,1] => [2,1] => [1,-2] => [1]
=> ? ∊ {0,0}
[1,2,3] => [1,2,3] => [2,3,-1] => []
=> ? ∊ {0,0,0,0}
[1,3,2] => [1,3,2] => [3,2,-1] => [1]
=> ? ∊ {0,0,0,0}
[2,1,3] => [2,1,3] => [1,3,-2] => [1]
=> ? ∊ {0,0,0,0}
[2,3,1] => [2,3,1] => [1,2,-3] => [1,1]
=> 0
[3,1,2] => [3,1,2] => [3,1,-2] => []
=> ? ∊ {0,0,0,0}
[3,2,1] => [3,2,1] => [2,1,-3] => [2]
=> 0
[1,2,3,4] => [1,2,3,4] => [2,3,4,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,2,4,3] => [1,2,4,3] => [2,4,3,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,3,2,4] => [1,3,2,4] => [3,2,4,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,3,4,2] => [1,3,4,2] => [4,2,3,-1] => [1,1]
=> 0
[1,4,2,3] => [1,4,2,3] => [3,4,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[1,4,3,2] => [1,4,3,2] => [4,3,2,-1] => [2]
=> 0
[2,1,3,4] => [2,1,3,4] => [1,3,4,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[2,1,4,3] => [2,1,4,3] => [1,4,3,-2] => [1,1]
=> 0
[2,3,1,4] => [2,3,1,4] => [1,2,4,-3] => [1,1]
=> 0
[2,3,4,1] => [2,3,4,1] => [1,2,3,-4] => [1,1,1]
=> 0
[2,4,1,3] => [2,4,1,3] => [1,4,2,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[2,4,3,1] => [2,4,3,1] => [1,3,2,-4] => [2,1]
=> 1
[3,1,2,4] => [3,1,2,4] => [3,1,4,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[3,1,4,2] => [3,1,4,2] => [4,1,3,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[3,2,1,4] => [3,2,1,4] => [2,1,4,-3] => [2]
=> 0
[3,2,4,1] => [3,2,4,1] => [2,1,3,-4] => [2,1]
=> 1
[3,4,1,2] => [3,4,1,2] => [4,1,2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[3,4,2,1] => [3,4,2,1] => [3,1,2,-4] => [3]
=> 0
[4,1,2,3] => [4,1,2,3] => [3,4,1,-2] => [2]
=> 0
[4,1,3,2] => [4,1,3,2] => [4,3,1,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[4,2,1,3] => [4,2,1,3] => [2,4,1,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[4,2,3,1] => [4,2,3,1] => [2,3,1,-4] => [3]
=> 0
[4,3,1,2] => [4,3,1,2] => [4,2,1,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,4}
[4,3,2,1] => [4,3,2,1] => [3,2,1,-4] => [2,1]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,3,5,4] => [1,2,3,5,4] => [2,3,5,4,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,4,3,5] => [1,2,4,3,5] => [2,4,3,5,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,4,5,3] => [1,2,4,5,3] => [2,5,3,4,-1] => [1,1]
=> 0
[1,2,5,3,4] => [1,2,5,3,4] => [2,4,5,3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,2,5,4,3] => [1,2,5,4,3] => [2,5,4,3,-1] => [2]
=> 0
[1,3,2,4,5] => [1,3,2,4,5] => [3,2,4,5,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,2,5,4] => [1,3,2,5,4] => [3,2,5,4,-1] => [1,1]
=> 0
[1,3,4,2,5] => [1,3,4,2,5] => [4,2,3,5,-1] => [1,1]
=> 0
[1,3,4,5,2] => [1,3,4,5,2] => [5,2,3,4,-1] => [1,1,1]
=> 0
[1,3,5,2,4] => [1,3,5,2,4] => [4,2,5,3,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,3,5,4,2] => [1,3,5,4,2] => [5,2,4,3,-1] => [2,1]
=> 1
[1,4,2,3,5] => [1,4,2,3,5] => [3,4,2,5,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,2,5,3] => [1,4,2,5,3] => [3,5,2,4,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,3,2,5] => [1,4,3,2,5] => [4,3,2,5,-1] => [2]
=> 0
[1,4,3,5,2] => [1,4,3,5,2] => [5,3,2,4,-1] => [2,1]
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,2,3,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,4,5,3,2] => [1,4,5,3,2] => [5,4,2,3,-1] => [3]
=> 0
[1,5,2,3,4] => [1,5,2,3,4] => [3,4,5,2,-1] => [2]
=> 0
[1,5,2,4,3] => [1,5,2,4,3] => [3,5,4,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,3,2,4] => [1,5,3,2,4] => [4,3,5,2,-1] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,3,4,2] => [1,5,3,4,2] => [5,3,4,2,-1] => [3]
=> 0
[1,5,4,2,3] => [1,5,4,2,3] => [4,5,3,2,-1] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,2,-1] => [2,1]
=> 1
[2,1,3,4,5] => [2,1,3,4,5] => [1,3,4,5,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,3,5,4] => [2,1,3,5,4] => [1,3,5,4,-2] => [1,1]
=> 0
[2,1,4,3,5] => [2,1,4,3,5] => [1,4,3,5,-2] => [1,1]
=> 0
[2,1,4,5,3] => [2,1,4,5,3] => [1,5,3,4,-2] => [1,1,1]
=> 0
[2,1,5,3,4] => [2,1,5,3,4] => [1,4,5,3,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,1,5,4,3] => [2,1,5,4,3] => [1,5,4,3,-2] => [2,1]
=> 1
[2,3,1,4,5] => [2,3,1,4,5] => [1,2,4,5,-3] => [1,1]
=> 0
[2,3,1,5,4] => [2,3,1,5,4] => [1,2,5,4,-3] => [1,1,1]
=> 0
[2,3,4,1,5] => [2,3,4,1,5] => [1,2,3,5,-4] => [1,1,1]
=> 0
[2,3,4,5,1] => [2,3,4,5,1] => [1,2,3,4,-5] => [1,1,1,1]
=> 0
[2,3,5,1,4] => [2,3,5,1,4] => [1,2,5,3,-4] => [1,1]
=> 0
[2,3,5,4,1] => [2,3,5,4,1] => [1,2,4,3,-5] => [2,1,1]
=> 1
[2,4,1,3,5] => [2,4,1,3,5] => [1,4,2,5,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,1,5,3] => [2,4,1,5,3] => [1,5,2,4,-3] => [1,1]
=> 0
[2,4,3,1,5] => [2,4,3,1,5] => [1,3,2,5,-4] => [2,1]
=> 1
[2,4,3,5,1] => [2,4,3,5,1] => [1,3,2,4,-5] => [2,1,1]
=> 1
[2,4,5,1,3] => [2,4,5,1,3] => [1,5,2,3,-4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,4,5,3,1] => [2,4,5,3,1] => [1,4,2,3,-5] => [3,1]
=> 2
[2,5,1,3,4] => [2,5,1,3,4] => [1,4,5,2,-3] => [2,1]
=> 1
[2,5,1,4,3] => [2,5,1,4,3] => [1,5,4,2,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,1,4] => [2,5,3,1,4] => [1,3,5,2,-4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[2,5,3,4,1] => [2,5,3,4,1] => [1,3,4,2,-5] => [3,1]
=> 2
[2,5,4,1,3] => [2,5,4,1,3] => [1,5,3,2,-4] => [1,1]
=> 0
[2,5,4,3,1] => [2,5,4,3,1] => [1,4,3,2,-5] => [2,1,1]
=> 1
[3,1,2,4,5] => [3,1,2,4,5] => [3,1,4,5,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,2,5,4] => [3,1,2,5,4] => [3,1,5,4,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,4,2,5] => [3,1,4,2,5] => [4,1,3,5,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,4,5,2] => [3,1,4,5,2] => [5,1,3,4,-2] => [1,1]
=> 0
[3,1,5,2,4] => [3,1,5,2,4] => [4,1,5,3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,1,5,4,2] => [3,1,5,4,2] => [5,1,4,3,-2] => [2]
=> 0
[3,2,1,4,5] => [3,2,1,4,5] => [2,1,4,5,-3] => [2]
=> 0
[3,2,1,5,4] => [3,2,1,5,4] => [2,1,5,4,-3] => [2,1]
=> 1
[3,2,4,1,5] => [3,2,4,1,5] => [2,1,3,5,-4] => [2,1]
=> 1
[3,2,4,5,1] => [3,2,4,5,1] => [2,1,3,4,-5] => [2,1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2,5] => [4,1,2,5,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,1,5,2] => [3,4,1,5,2] => [5,1,2,4,-3] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,4,5,1,2] => [3,4,5,1,2] => [5,1,2,3,-4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,1,4,2] => [3,5,1,4,2] => [5,1,4,2,-3] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,2,1,4] => [3,5,2,1,4] => [3,1,5,2,-4] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[3,5,4,1,2] => [3,5,4,1,2] => [5,1,3,2,-4] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,3,2,5] => [4,1,3,2,5] => [4,3,1,5,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,3,5,2] => [4,1,3,5,2] => [5,3,1,4,-2] => [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
[4,1,5,3,2] => [4,1,5,3,2] => [5,4,1,3,-2] => []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5}
Description
The number of characters of the symmetric group whose value on the partition is zero. The maximal value for any given size is recorded in [2].
The following 127 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001570The minimal number of edges to add to make a graph Hamiltonian. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001280The number of parts of an integer partition that are at least two. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001651The Frankl number of a lattice. St000455The second largest eigenvalue of a graph if it is integral. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000934The 2-degree of an integer partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000225Difference between largest and smallest parts in a partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001490The number of connected components of a skew partition. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St000454The largest eigenvalue of a graph if it is integral. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000914The sum of the values of the Möbius function of a poset. St000422The energy of a graph, if it is integral. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000260The radius of a connected graph. St000284The Plancherel distribution on integer partitions. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001846The number of elements which do not have a complement in the lattice. St001820The size of the image of the pop stack sorting operator. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001561The value of the elementary symmetric function evaluated at 1. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000068The number of minimal elements in a poset. St001621The number of atoms of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000632The jump number of the poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001779The order of promotion on the set of linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000264The girth of a graph, which is not a tree. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St000095The number of triangles of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000322The skewness of a graph. St000449The number of pairs of vertices of a graph with distance 4. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001765The number of connected components of the friends and strangers graph.