Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001625
St001625: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([(0,1)],2)
=> -1
([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 4
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 0
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> 0
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 0
Description
The Möbius invariant of a lattice. The '''Möbius invariant''' of a lattice $L$ is the value of the Möbius function applied to least and greatest element, that is $\mu(L)=\mu_L(\hat{0},\hat{1})$, where $\hat{0}$ is the least element of $L$ and $\hat{1}$ is the greatest element of $L$. For the definition of the Möbius function, see [[St000914]].
Matching statistic: St000478
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000478: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 65%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> ? = 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,1}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,1}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,1,2}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,2,3}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [5,2]
=> [2]
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [2]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [5,2]
=> [2]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> [5,2]
=> [2]
=> 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
Description
Another weight of a partition according to Alladi. According to Theorem 3.4 (Alladi 2012) in [1] $$ \sum_{\pi\in GG_1(r)} w_1(\pi) $$ equals the number of partitions of $r$ whose odd parts are all distinct. $GG_1(r)$ is the set of partitions of $r$ where consecutive entries differ by at least $2$, and consecutive even entries differ by at least $4$.
Matching statistic: St000934
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000934: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 65%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> ? = 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,1}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,1}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,1,2}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,2,3}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,3}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [5,2]
=> [2]
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [2]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [5,2]
=> [2]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 0
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> [5,2]
=> [2]
=> 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,0,0,1,1,2,2,2,2,3,4}
Description
The 2-degree of an integer partition. For an integer partition $\lambda$, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
Matching statistic: St000938
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000938: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 65%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> ? = 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,1}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,1}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,1,2}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> 0
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,2,3}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> []
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
Description
The number of zeros of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Matching statistic: St000940
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000940: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 65%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> ? = 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,1}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,1}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,1,2}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> 0
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,2,3}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> []
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
Description
The number of characters of the symmetric group whose value on the partition is zero. The maximal value for any given size is recorded in [2].
Matching statistic: St001124
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001124: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 65%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> ? = 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,1}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,1}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,1,2}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,1,2}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> 0
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,2,3}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,3}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> [5,2]
=> [2]
=> 0
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [5,2]
=> [2]
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> []
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1]
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,4}
Description
The multiplicity of the standard representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{(n-1)1}$, for $\lambda\vdash n > 1$. For $n\leq1$ the statistic is undefined. It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than [[St000159]], the number of distinct parts of the partition.
Mp00263: Lattices join irreduciblesPosets
Mp00205: Posets maximal antichainsLattices
St001876: Lattices ⟶ ℤResult quality: 50% values known / values provided: 55%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],0)
=> ?
=> ? = 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,1,2}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,2}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Mp00263: Lattices join irreduciblesPosets
Mp00205: Posets maximal antichainsLattices
St001877: Lattices ⟶ ℤResult quality: 50% values known / values provided: 55%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],0)
=> ?
=> ? = 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,1,2}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,2}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,2,3}
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,4}
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
Description
Number of indecomposable injective modules with projective dimension 2.
Mp00263: Lattices join irreduciblesPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000260: Graphs ⟶ ℤResult quality: 50% values known / values provided: 53%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],0)
=> ?
=> ?
=> ? = 1 + 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = -1 + 1
([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2} + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2} + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,1,1,1,1,2,3} + 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3} + 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3} + 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3} + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,1,2,3} + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,2,3} + 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,2,3} + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4} + 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St001651
Mp00263: Lattices join irreduciblesPosets
Mp00206: Posets antichains of maximal sizeLattices
St001651: Lattices ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 83%
Values
([],1)
=> ([],0)
=> ?
=> ? = 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = -1
([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? = 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,1}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,1}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,1}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 0
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> 0
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 4
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3}
Description
The Frankl number of a lattice. For a lattice $L$ on at least two elements, this is $$ \max_x(|L|-2|[x, 1]|), $$ where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000456The monochromatic index of a connected graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001118The acyclic chromatic index of a graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000264The girth of a graph, which is not a tree. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000455The second largest eigenvalue of a graph if it is integral. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.