Your data matches 196 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001739
St001739: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 1
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 3
([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 1
([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
([(1,4),(2,3)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> 4
([(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> 5
([(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 5
([(0,1),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of graphs with the same edge polytope as the given graph. The symmetric edge polytope of a graph on $n$ vertices is the polytope in $\mathbb R^n$ defined as the convex hull of $e_i + e_j$ for each edge $(i, j)$, where $e_1,\dots, e_n$ denotes the standard basis.
Mp00117: Graphs Ore closureGraphs
Mp00247: Graphs de-duplicateGraphs
Mp00111: Graphs complementGraphs
St000771: Graphs ⟶ ℤResult quality: 44% values known / values provided: 49%distinct values known / distinct values provided: 44%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1}
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,3,3,3}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,3}
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1
([(4,5)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00117: Graphs Ore closureGraphs
Mp00247: Graphs de-duplicateGraphs
Mp00111: Graphs complementGraphs
St000772: Graphs ⟶ ℤResult quality: 44% values known / values provided: 49%distinct values known / distinct values provided: 44%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1}
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,3,3,3}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,3,3,3}
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,2,4,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1
([(4,5)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001281
Mp00274: Graphs block-cut treeGraphs
Mp00157: Graphs connected complementGraphs
Mp00154: Graphs coreGraphs
St001281: Graphs ⟶ ℤResult quality: 33% values known / values provided: 41%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1}
([(1,2)],3)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1}
([],4)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(2,3)],4)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([],5)
=> ([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(3,4)],5)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> ([],6)
=> ([],6)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(4,5)],6)
=> ([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
Description
The normalized isoperimetric number of a graph. The isoperimetric number, or Cheeger constant, of a graph $G$ is $$ i(G) = \min\left\{\frac{|\partial A|}{|A|}\ : \ A\subseteq V(G), 0 < |A|\leq |V(G)|/2\right\}, $$ where $$ \partial A := \{(x, y)\in E(G)\ : \ x\in A, y\in V(G)\setminus A \}. $$ This statistic is $i(G)\cdot\lfloor n/2\rfloor$.
Matching statistic: St001592
Mp00274: Graphs block-cut treeGraphs
Mp00157: Graphs connected complementGraphs
Mp00154: Graphs coreGraphs
St001592: Graphs ⟶ ℤResult quality: 33% values known / values provided: 41%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1}
([(1,2)],3)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1}
([],4)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(2,3)],4)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,3,3,3}
([],5)
=> ([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(3,4)],5)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5}
([],6)
=> ([],6)
=> ([],6)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(4,5)],6)
=> ([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
Description
The maximal number of simple paths between any two different vertices of a graph.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000207: Integer partitions ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 56%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 1
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 4
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 3
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has all vertices in integer lattice points.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000208: Integer partitions ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 1
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices. See also [[St000205]], [[St000206]] and [[St000207]].
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000667: Integer partitions ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 1
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
The greatest common divisor of the parts of the partition.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000755: Integer partitions ⟶ ℤResult quality: 22% values known / values provided: 31%distinct values known / distinct values provided: 22%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 1
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial. For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001389: Integer partitions ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 1
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,2,3,3,3}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,2,2,2,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12}
Description
The number of partitions of the same length below the given integer partition. For a partition $\lambda_1 \geq \dots \lambda_k > 0$, this number is $$ \det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.$$
The following 186 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001432The order dimension of the partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St000003The number of standard Young tableaux of the partition. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000010The length of the partition. St000015The number of peaks of a Dyck path. St000026The position of the first return of a Dyck path. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000053The number of valleys of the Dyck path. St000075The orbit size of a standard tableau under promotion. St000120The number of left tunnels of a Dyck path. St000147The largest part of an integer partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000182The number of permutations whose cycle type is the given integer partition. St000183The side length of the Durfee square of an integer partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000291The number of descents of a binary word. St000306The bounce count of a Dyck path. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000331The number of upper interactions of a Dyck path. St000345The number of refinements of a partition. St000346The number of coarsenings of a partition. St000378The diagonal inversion number of an integer partition. St000390The number of runs of ones in a binary word. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000517The Kreweras number of an integer partition. St000529The number of permutations whose descent word is the given binary word. St000531The leading coefficient of the rook polynomial of an integer partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000543The size of the conjugacy class of a binary word. St000548The number of different non-empty partial sums of an integer partition. St000626The minimal period of a binary word. St000627The exponent of a binary word. St000630The length of the shortest palindromic decomposition of a binary word. St000675The number of centered multitunnels of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000691The number of changes of a binary word. St000734The last entry in the first row of a standard tableau. St000783The side length of the largest staircase partition fitting into a partition. St000847The number of standard Young tableaux whose descent set is the binary word. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000876The number of factors in the Catalan decomposition of a binary word. St000913The number of ways to refine the partition into singletons. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000935The number of ordered refinements of an integer partition. St000947The major index east count of a Dyck path. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000983The length of the longest alternating subword. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001161The major index north count of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001313The number of Dyck paths above the lattice path given by a binary word. St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001498The normalised height of a Nakayama algebra with magnitude 1. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001530The depth of a Dyck path. St001595The number of standard Young tableaux of the skew partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001614The cyclic permutation representation number of a skew partition. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001721The degree of a binary word. St001732The number of peaks visible from the left. St001733The number of weak left to right maxima of a Dyck path. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001838The number of nonempty primitive factors of a binary word. St001884The number of borders of a binary word. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001955The number of natural descents for set-valued two row standard Young tableaux. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001128The exponens consonantiae of a partition. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001360The number of covering relations in Young's lattice below a partition. St001378The product of the cohook lengths of the integer partition. St001563The value of the power-sum symmetric function evaluated at 1. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000456The monochromatic index of a connected graph. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001570The minimal number of edges to add to make a graph Hamiltonian. St000259The diameter of a connected graph. St000260The radius of a connected graph. St001118The acyclic chromatic index of a graph. St000707The product of the factorials of the parts. St000815The number of semistandard Young tableaux of partition weight of given shape. St000678The number of up steps after the last double rise of a Dyck path. St000706The product of the factorials of the multiplicities of an integer partition. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000939The number of characters of the symmetric group whose value on the partition is positive. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001060The distinguishing index of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001877Number of indecomposable injective modules with projective dimension 2. St000455The second largest eigenvalue of a graph if it is integral. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000618The number of self-evacuating tableaux of given shape. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St000916The packing number of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St000323The minimal crossing number of a graph. St000370The genus of a graph. St000447The number of pairs of vertices of a graph with distance 3.