Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001768
St001768: Signed permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[-1] => 1
[1,2] => 1
[1,-2] => 1
[-1,2] => 1
[-1,-2] => 2
[2,1] => 1
[2,-1] => 1
[-2,1] => 1
[-2,-1] => 1
[1,2,3] => 1
[1,2,-3] => 1
[1,-2,3] => 1
[1,-2,-3] => 2
[-1,2,3] => 1
[-1,2,-3] => 4
[-1,-2,3] => 14
[-1,-2,-3] => 42
[1,3,2] => 1
[1,3,-2] => 1
[1,-3,2] => 1
[1,-3,-2] => 1
[-1,3,2] => 4
[-1,3,-2] => 9
[-1,-3,2] => 9
[-1,-3,-2] => 16
[2,1,3] => 1
[2,1,-3] => 2
[2,-1,3] => 1
[2,-1,-3] => 3
[-2,1,3] => 1
[-2,1,-3] => 3
[-2,-1,3] => 5
[-2,-1,-3] => 12
[2,3,1] => 1
[2,3,-1] => 1
[2,-3,1] => 2
[2,-3,-1] => 2
[-2,3,1] => 3
[-2,3,-1] => 5
[-2,-3,1] => 5
[-2,-3,-1] => 7
[3,1,2] => 1
[3,1,-2] => 2
[3,-1,2] => 3
[3,-1,-2] => 5
[-3,1,2] => 1
[-3,1,-2] => 2
[-3,-1,2] => 5
[-3,-1,-2] => 7
Description
The number of reduced words of a signed permutation. This is the number of ways to write a permutation as a minimal length product of simple reflections.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The least common multiple of the parts of the partition.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000706: Integer partitions ⟶ ℤResult quality: 4% values known / values provided: 7%distinct values known / distinct values provided: 4%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 2
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 6
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 2
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 2
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 2
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 2
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 2
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 2
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 2
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 2
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,-4,-3] => [2,2]
=> [2]
=> 1
[-2,-1,4,3] => [2,2]
=> [2]
=> 1
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 2
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 2
[3,4,1,2] => [2,2]
=> [2]
=> 1
[3,-4,1,-2] => [2,2]
=> [2]
=> 1
[-3,4,-1,2] => [2,2]
=> [2]
=> 1
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 2
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 2
[4,3,2,1] => [2,2]
=> [2]
=> 1
[4,-3,-2,1] => [2,2]
=> [2]
=> 1
[-4,3,2,-1] => [2,2]
=> [2]
=> 1
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 1
Description
The product of the factorials of the multiplicities of an integer partition.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000707: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The product of the factorials of the parts.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000708: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The product of the parts of an integer partition.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000770: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The major index of an integer partition when read from bottom to top. This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top. For example, the partition $\lambda = (8,6,6,4,3,3)$ has corners at positions 3,6,9, and 13, giving a major index of 31.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000813: Integer partitions ⟶ ℤResult quality: 4% values known / values provided: 7%distinct values known / distinct values provided: 4%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 3
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 10
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 3
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 3
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 3
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 3
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 3
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 3
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 3
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 3
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 3
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 3
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 3
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 3
[2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,-4,-3] => [2,2]
=> [2]
=> 1
[-2,-1,4,3] => [2,2]
=> [2]
=> 1
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 3
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 3
[3,4,1,2] => [2,2]
=> [2]
=> 1
[3,-4,1,-2] => [2,2]
=> [2]
=> 1
[-3,4,-1,2] => [2,2]
=> [2]
=> 1
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 3
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 3
[4,3,2,1] => [2,2]
=> [2]
=> 1
[4,-3,-2,1] => [2,2]
=> [2]
=> 1
[-4,3,2,-1] => [2,2]
=> [2]
=> 1
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 1
Description
The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. This is also the sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to monomial symmetric functions.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000815: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The number of semistandard Young tableaux of partition weight of given shape. The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence. Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000933: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The number of multipartitions of sizes given by an integer partition. This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000937: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 7%distinct values known / distinct values provided: 3%
Values
[1] => [1]
=> []
=> ? ∊ {1,1}
[-1] => []
=> ?
=> ? ∊ {1,1}
[1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[2,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2}
[-2,-1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,3] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,2,-3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-2,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,3,-2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,2] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,-3,-2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,3,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-1,-3,-2] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,3] => [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,1,-3] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-1,-3] => [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[2,-3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,3,-1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-2,-3,-1] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,-1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,1,-2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[-3,-1,-2] => []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,7,7,9,9,12,14,16,42}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 1
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 1
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 1
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> 2
[2,1,-4,-3] => [2,2]
=> [2]
=> 2
[-2,-1,4,3] => [2,2]
=> [2]
=> 2
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 2
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> 2
[3,-4,1,-2] => [2,2]
=> [2]
=> 2
[-3,4,-1,2] => [2,2]
=> [2]
=> 2
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 2
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [2,2]
=> [2]
=> 2
[4,-3,-2,1] => [2,2]
=> [2]
=> 2
[-4,3,2,-1] => [2,2]
=> [2]
=> 2
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 2
Description
The number of positive values of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000418The number of Dyck paths that are weakly below a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000438The position of the last up step in a Dyck path. St000444The length of the maximal rise of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000981The length of the longest zigzag subpath. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001531Number of partial orders contained in the poset determined by the Dyck path. St001808The box weight or horizontal decoration of a Dyck path. St001959The product of the heights of the peaks of a Dyck path.