Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000087: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 2
1 => [1,1] => ([(0,1)],2)
=> 2
00 => [3] => ([],3)
=> 3
01 => [2,1] => ([(0,2),(1,2)],3)
=> 4
10 => [1,2] => ([(1,2)],3)
=> 4
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
000 => [4] => ([],4)
=> 4
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 6
010 => [2,2] => ([(1,3),(2,3)],4)
=> 7
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
100 => [1,3] => ([(2,3)],4)
=> 6
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 6
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
0000 => [5] => ([],5)
=> 5
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 8
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 10
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
0100 => [2,3] => ([(2,4),(3,4)],5)
=> 10
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 11
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
1000 => [1,4] => ([(3,4)],5)
=> 8
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 11
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 9
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
00000 => [6] => ([],6)
=> 6
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 10
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 13
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 14
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 17
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
01000 => [2,4] => ([(3,5),(4,5)],6)
=> 13
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 20
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 17
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
10000 => [1,5] => ([(4,5)],6)
=> 10
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
Description
The number of induced subgraphs. A subgraph $H \subseteq G$ is induced if $E(H)$ consists of all edges in $E(G)$ that connect the vertices of $H$.
Mp00178: Binary words to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
St001658: Skew partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [[2],[]]
=> 3 = 2 + 1
1 => [1,1] => [[1,1],[]]
=> 3 = 2 + 1
00 => [3] => [[3],[]]
=> 4 = 3 + 1
01 => [2,1] => [[2,2],[1]]
=> 5 = 4 + 1
10 => [1,2] => [[2,1],[]]
=> 5 = 4 + 1
11 => [1,1,1] => [[1,1,1],[]]
=> 4 = 3 + 1
000 => [4] => [[4],[]]
=> 5 = 4 + 1
001 => [3,1] => [[3,3],[2]]
=> 7 = 6 + 1
010 => [2,2] => [[3,2],[1]]
=> 8 = 7 + 1
011 => [2,1,1] => [[2,2,2],[1,1]]
=> 7 = 6 + 1
100 => [1,3] => [[3,1],[]]
=> 7 = 6 + 1
101 => [1,2,1] => [[2,2,1],[1]]
=> 8 = 7 + 1
110 => [1,1,2] => [[2,1,1],[]]
=> 7 = 6 + 1
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> 5 = 4 + 1
0000 => [5] => [[5],[]]
=> 6 = 5 + 1
0001 => [4,1] => [[4,4],[3]]
=> 9 = 8 + 1
0010 => [3,2] => [[4,3],[2]]
=> 11 = 10 + 1
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> 10 = 9 + 1
0100 => [2,3] => [[4,2],[1]]
=> 11 = 10 + 1
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> 13 = 12 + 1
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> 12 = 11 + 1
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> 9 = 8 + 1
1000 => [1,4] => [[4,1],[]]
=> 9 = 8 + 1
1001 => [1,3,1] => [[3,3,1],[2]]
=> 12 = 11 + 1
1010 => [1,2,2] => [[3,2,1],[1]]
=> 13 = 12 + 1
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> 11 = 10 + 1
1100 => [1,1,3] => [[3,1,1],[]]
=> 10 = 9 + 1
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> 11 = 10 + 1
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> 9 = 8 + 1
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> 6 = 5 + 1
00000 => [6] => [[6],[]]
=> 7 = 6 + 1
00001 => [5,1] => [[5,5],[4]]
=> 11 = 10 + 1
00010 => [4,2] => [[5,4],[3]]
=> 14 = 13 + 1
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> 13 = 12 + 1
00100 => [3,3] => [[5,3],[2]]
=> 15 = 14 + 1
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> 18 = 17 + 1
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> 17 = 16 + 1
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> 13 = 12 + 1
01000 => [2,4] => [[5,2],[1]]
=> 14 = 13 + 1
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> 19 = 18 + 1
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> 21 = 20 + 1
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> 18 = 17 + 1
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> 17 = 16 + 1
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> 19 = 18 + 1
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> 16 = 15 + 1
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> 11 = 10 + 1
10000 => [1,5] => [[5,1],[]]
=> 11 = 10 + 1
10001 => [1,4,1] => [[4,4,1],[3]]
=> 16 = 15 + 1
10010 => [1,3,2] => [[4,3,1],[2]]
=> 19 = 18 + 1
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> 17 = 16 + 1
Description
The total number of rook placements on a Ferrers board.
Matching statistic: St000070
Mp00178: Binary words to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
St000070: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [[2],[]]
=> ([(0,1)],2)
=> 3 = 2 + 1
1 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> 3 = 2 + 1
00 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
01 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> 5 = 4 + 1
10 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 5 = 4 + 1
11 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> 7 = 6 + 1
010 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 8 = 7 + 1
011 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> 7 = 6 + 1
100 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 7 = 6 + 1
101 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 8 = 7 + 1
110 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 7 = 6 + 1
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
0000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
0001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 9 = 8 + 1
0010 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 11 = 10 + 1
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 10 = 9 + 1
0100 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 11 = 10 + 1
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 13 = 12 + 1
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 12 = 11 + 1
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 9 = 8 + 1
1000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 9 = 8 + 1
1001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 12 = 11 + 1
1010 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> 13 = 12 + 1
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> 11 = 10 + 1
1100 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 10 = 9 + 1
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> 11 = 10 + 1
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 9 = 8 + 1
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
00000 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7 = 6 + 1
00001 => [5,1] => [[5,5],[4]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 11 = 10 + 1
00010 => [4,2] => [[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> 14 = 13 + 1
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 13 = 12 + 1
00100 => [3,3] => [[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> 15 = 14 + 1
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> 18 = 17 + 1
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> 17 = 16 + 1
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 13 = 12 + 1
01000 => [2,4] => [[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> 14 = 13 + 1
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 19 = 18 + 1
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> 21 = 20 + 1
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> 18 = 17 + 1
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> 17 = 16 + 1
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 19 = 18 + 1
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> 16 = 15 + 1
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 11 = 10 + 1
10000 => [1,5] => [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 11 = 10 + 1
10001 => [1,4,1] => [[4,4,1],[3]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> 16 = 15 + 1
10010 => [1,3,2] => [[4,3,1],[2]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> 19 = 18 + 1
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> 17 = 16 + 1
Description
The number of antichains in a poset. An antichain in a poset $P$ is a subset of elements of $P$ which are pairwise incomparable. An order ideal is a subset $I$ of $P$ such that $a\in I$ and $b \leq_P a$ implies $b \in I$. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
St000518: Binary words ⟶ ℤResult quality: 95% values known / values provided: 98%distinct values known / distinct values provided: 95%
Values
0 => 2
1 => 2
00 => 3
01 => 4
10 => 4
11 => 3
000 => 4
001 => 6
010 => 7
011 => 6
100 => 6
101 => 7
110 => 6
111 => 4
0000 => 5
0001 => 8
0010 => 10
0011 => 9
0100 => 10
0101 => 12
0110 => 11
0111 => 8
1000 => 8
1001 => 11
1010 => 12
1011 => 10
1100 => 9
1101 => 10
1110 => 8
1111 => 5
00000 => 6
00001 => 10
00010 => 13
00011 => 12
00100 => 14
00101 => 17
00110 => 16
00111 => 12
01000 => 13
01001 => 18
01010 => 20
01011 => 17
01100 => 16
01101 => 18
01110 => 15
01111 => 10
10000 => 10
10001 => 15
10010 => 18
10011 => 16
=> ? = 1
Description
The number of distinct subsequences in a binary word. In contrast to the subword complexity [[St000294]] this is the cardinality of the set of all subsequences of not necessarily consecutive letters.
Matching statistic: St000110
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000110: Permutations ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 68%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 3 = 2 + 1
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 3 = 2 + 1
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 4 = 3 + 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 5 = 4 + 1
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 5 = 4 + 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 4 = 3 + 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5 = 4 + 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 7 = 6 + 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 8 = 7 + 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 7 = 6 + 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 7 = 6 + 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 8 = 7 + 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 7 = 6 + 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 5 = 4 + 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 6 = 5 + 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 9 = 8 + 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 11 = 10 + 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 10 = 9 + 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 11 = 10 + 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 13 = 12 + 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 12 = 11 + 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 9 = 8 + 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 9 = 8 + 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 12 = 11 + 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 13 = 12 + 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 11 = 10 + 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 10 = 9 + 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 11 = 10 + 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 9 = 8 + 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 6 = 5 + 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 7 = 6 + 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => 11 = 10 + 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => 14 = 13 + 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => 13 = 12 + 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 14 + 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 17 + 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 16 + 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 12 + 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 13 + 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 18 + 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 20 + 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 17 + 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 16 + 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 18 + 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 15 + 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => 11 = 10 + 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 10 + 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 15 + 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 18 + 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 16 + 1
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 17 + 1
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 20 + 1
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 18 + 1
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 13 + 1
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 12 + 1
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 16 + 1
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 17 + 1
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 14 + 1
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => 13 = 12 + 1
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => 14 = 13 + 1
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => 11 = 10 + 1
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => 7 = 6 + 1
=> [1] => [1,0]
=> [2,1] => 2 = 1 + 1
Description
The number of permutations less than or equal to a permutation in left weak order. This is the same as the number of permutations less than or equal to the given permutation in right weak order.
Matching statistic: St001464
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001464: Permutations ⟶ ℤResult quality: 49% values known / values provided: 49%distinct values known / distinct values provided: 63%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 3 = 2 + 1
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 3 = 2 + 1
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 4 = 3 + 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 5 = 4 + 1
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 5 = 4 + 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 4 = 3 + 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5 = 4 + 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 7 = 6 + 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 8 = 7 + 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 7 = 6 + 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 7 = 6 + 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 8 = 7 + 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 7 = 6 + 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 5 = 4 + 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 6 = 5 + 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 9 = 8 + 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 11 = 10 + 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 10 = 9 + 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 11 = 10 + 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 13 = 12 + 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 12 = 11 + 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 9 = 8 + 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 9 = 8 + 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 12 = 11 + 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 13 = 12 + 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 11 = 10 + 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 10 = 9 + 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 11 = 10 + 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 9 = 8 + 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 6 = 5 + 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 6 + 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 10 + 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 13 + 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ? = 12 + 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 14 + 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 17 + 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 16 + 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 12 + 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 13 + 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 18 + 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 20 + 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 17 + 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 16 + 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 18 + 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 15 + 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ? = 10 + 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 10 + 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 15 + 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 18 + 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 16 + 1
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 17 + 1
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 20 + 1
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 18 + 1
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 13 + 1
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 12 + 1
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 16 + 1
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 17 + 1
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 14 + 1
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ? = 12 + 1
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 13 + 1
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 10 + 1
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 6 + 1
=> [1] => [1,0]
=> [2,1] => 2 = 1 + 1
Description
The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise.
Mp00262: Binary words poset of factorsPosets
St000656: Posets ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 32%
Values
0 => ([(0,1)],2)
=> 2
1 => ([(0,1)],2)
=> 2
00 => ([(0,2),(2,1)],3)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
11 => ([(0,2),(2,1)],3)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 7
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 7
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 9
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 12
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 11
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 11
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 12
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 9
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 14
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 20
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 15
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 15
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 20
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 14
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
=> ?
=> ? = 1
Description
The number of cuts of a poset. A cut is a subset $A$ of the poset such that the set of lower bounds of the set of upper bounds of $A$ is exactly $A$.
Matching statistic: St001684
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001684: Permutations ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 32%
Values
0 => [2] => [1,1,0,0]
=> [2,3,1] => 2
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 2
00 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 3
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 4
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 4
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 6
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 7
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 6
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 6
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 7
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 6
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ? = 5
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? = 8
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 10
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ? = 9
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 10
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ? = 12
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ? = 11
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ? = 8
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 8
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ? = 11
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 12
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ? = 10
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 9
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 10
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 8
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 5
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 6
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 10
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 13
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ? = 12
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 14
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 17
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 16
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ? = 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 13
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 18
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 20
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 17
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 16
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 18
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 15
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ? = 10
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 10
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 15
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 18
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 16
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 17
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 20
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 18
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 13
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 12
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 16
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 17
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 14
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ? = 12
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 13
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 10
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 6
=> [1] => [1,0]
=> [2,1] => 1
Description
The reduced word complexity of a permutation. For a permutation $\pi$, this is the smallest length of a word in simple transpositions that contains all reduced expressions of $\pi$. For example, the permutation $[3,2,1] = (12)(23)(12) = (23)(12)(23)$ and the reduced word complexity is $4$ since the smallest words containing those two reduced words as subwords are $(12),(23),(12),(23)$ and also $(23),(12),(23),(12)$. This statistic appears in [1, Question 6.1].
Mp00262: Binary words poset of factorsPosets
St001880: Posets ⟶ ℤResult quality: 21% values known / values provided: 22%distinct values known / distinct values provided: 21%
Values
0 => ([(0,1)],2)
=> ? = 2
1 => ([(0,1)],2)
=> ? = 2
00 => ([(0,2),(2,1)],3)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
11 => ([(0,2),(2,1)],3)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? = 7
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? = 7
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 9
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 12
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 11
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? = 11
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 12
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 9
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 10
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 8
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 14
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 20
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 15
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ? = 15
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 20
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 18
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 16
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 17
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 14
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 12
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 13
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 10
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
=> ?
=> ? = 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Mp00262: Binary words poset of factorsPosets
Mp00195: Posets order idealsLattices
St001875: Lattices ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 26%
Values
0 => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
1 => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
00 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 5 = 4 + 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 5 = 4 + 1
11 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 6 + 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ? = 7 + 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 6 + 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 6 + 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ? = 7 + 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 6 + 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 8 + 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 10 + 1
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 9 + 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 10 + 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,8),(2,11),(3,11),(4,9),(5,9),(6,10),(7,10),(8,2),(8,3),(9,1),(10,4),(10,5),(11,6),(11,7)],12)
=> ? = 12 + 1
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,9),(2,17),(3,11),(3,15),(4,11),(4,14),(5,12),(6,13),(7,10),(8,7),(8,17),(9,2),(9,8),(10,14),(10,15),(11,18),(12,16),(13,16),(14,5),(14,18),(15,6),(15,18),(16,1),(17,3),(17,4),(17,10),(18,12),(18,13)],19)
=> ? = 11 + 1
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 8 + 1
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 8 + 1
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,9),(2,17),(3,11),(3,15),(4,11),(4,14),(5,12),(6,13),(7,10),(8,7),(8,17),(9,2),(9,8),(10,14),(10,15),(11,18),(12,16),(13,16),(14,5),(14,18),(15,6),(15,18),(16,1),(17,3),(17,4),(17,10),(18,12),(18,13)],19)
=> ? = 11 + 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,8),(2,11),(3,11),(4,9),(5,9),(6,10),(7,10),(8,2),(8,3),(9,1),(10,4),(10,5),(11,6),(11,7)],12)
=> ? = 12 + 1
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 10 + 1
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 9 + 1
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 10 + 1
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 8 + 1
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 10 + 1
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 13 + 1
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 12 + 1
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ?
=> ? = 14 + 1
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 17 + 1
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 16 + 1
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 12 + 1
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 13 + 1
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 18 + 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,10),(2,14),(3,14),(4,11),(5,11),(6,13),(7,13),(8,12),(9,12),(10,2),(10,3),(11,1),(12,6),(12,7),(13,4),(13,5),(14,8),(14,9)],15)
=> ? = 20 + 1
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 17 + 1
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 16 + 1
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 18 + 1
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ?
=> ? = 15 + 1
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 10 + 1
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 10 + 1
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ?
=> ? = 15 + 1
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 18 + 1
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 16 + 1
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 17 + 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,10),(2,14),(3,14),(4,11),(5,11),(6,13),(7,13),(8,12),(9,12),(10,2),(10,3),(11,1),(12,6),(12,7),(13,4),(13,5),(14,8),(14,9)],15)
=> ? = 20 + 1
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 18 + 1
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 13 + 1
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 12 + 1
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 16 + 1
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 17 + 1
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ?
=> ? = 14 + 1
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 12 + 1
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 13 + 1
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 10 + 1
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
Description
The number of simple modules with projective dimension at most 1.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.