Your data matches 445 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000225: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
Description
Difference between largest and smallest parts in a partition.
Matching statistic: St000175
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> [1]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> [1]
=> 0
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial $$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$ The statistic of the degree of this polynomial. For example, the partition $(3, 2, 1, 1, 1)$ gives $$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$ which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$. This is the same as the number of unordered pairs of different parts, which follows from: $$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000278: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> [1]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> [1]
=> 1 = 0 + 1
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. This is the multinomial of the multiplicities of the parts, see [1]. This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$, where $k$ is the number of parts of $\lambda$. An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$ where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001128: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0 + 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,1]
=> [3,1]
=> 3 = 2 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1 = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1 = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [4,3]
=> [3]
=> 1 = 0 + 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> ? = 0 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1]
=> ? = 0 + 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> [1]
=> ? = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> [1]
=> ? = 0 + 1
([(4,6),(5,6)],7)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(3,6),(4,5)],7)
=> [1,1]
=> [1]
=> ? = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [1]
=> ? = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,1]
=> [1]
=> ? = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1]
=> [1]
=> ? = 0 + 1
Description
The exponens consonantiae of a partition. This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
Mp00117: Graphs Ore closureGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 50% values known / values provided: 53%distinct values known / distinct values provided: 50%
Values
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St001696
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001696: Standard tableaux ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 50%
Values
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 0
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 0
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 0
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 0
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10]]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18],[19,20,21],[22,23,24]]
=> ? = 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13]]
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15,16]]
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14,15]]
=> ? = 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? = 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12,13]]
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 0
([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 0
([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20]]
=> ? = 0
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]]
=> ? = 0
([(2,3),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4,4]
=> ?
=> ? = 0
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14]]
=> ? = 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,5,3,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13],[14,15,16]]
=> ? = 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14]]
=> ? = 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13]]
=> ? = 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,5,2,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12],[13,14]]
=> ? = 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13]]
=> ? = 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12]]
=> ? = 0
Description
The natural major index of a standard Young tableau. A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation. The natural major index of a tableau with natural descent set $D$ is then $\sum_{d\in D} d$.
Matching statistic: St000745
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 50%
Values
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> 1 = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> 1 = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10]]
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> 1 = 0 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 1 = 0 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18],[19,20,21],[22,23,24]]
=> ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13]]
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 0 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15,16]]
=> ? = 0 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 2 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 0 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0 + 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 1 = 0 + 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10]]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14,15]]
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> 1 = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0 + 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0 + 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 2 + 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 0 + 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 0 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? = 0 + 1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12,13]]
=> ? = 0 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 2 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 0 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0 + 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 0 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 0 + 1
([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 0 + 1
([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20]]
=> ? = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]]
=> ? = 0 + 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4,4]
=> ?
=> ? = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14]]
=> ? = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,5,3,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13],[14,15,16]]
=> ? = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14]]
=> ? = 0 + 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13]]
=> ? = 0 + 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,5,2,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12],[13,14]]
=> ? = 0 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,3]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12,13]]
=> ? = 0 + 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,2]
=> [[1,2,3,4,5],[6,7,8,9,10],[11,12]]
=> ? = 0 + 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Mp00243: Graphs weak duplicate orderPosets
St001890: Posets ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 50%
Values
([(0,2),(1,2)],3)
=> ([],2)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> 1 = 0 + 1
([(0,3),(1,2)],4)
=> ([],4)
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 1 = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> 1 = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],4)
=> 1 = 0 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(2,3),(2,4)],5)
=> 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 0 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],6)
=> ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> ? = 0 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4)],6)
=> ? = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(4,2),(5,3)],6)
=> ? = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 0 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6)
=> ? = 0 + 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 0 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],4)
=> 1 = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ? = 0 + 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(5,4)],6)
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5)],6)
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,4),(4,5)],6)
=> ? = 0 + 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ? = 0 + 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 0 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],6)
=> ? = 0 + 1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5)],6)
=> ? = 0 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([],6)
=> ? = 2 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 0 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 0 + 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 0 + 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4)],6)
=> ? = 0 + 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 0 + 1
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Mp00247: Graphs de-duplicateGraphs
Mp00259: Graphs vertex additionGraphs
St000096: Graphs ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 50%
Values
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ? = 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ? = 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(2,7),(3,6),(4,5)],8)
=> ? = 0
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(2,3),(4,7),(5,6),(6,7)],8)
=> ? = 0
Description
The number of spanning trees of a graph. A subgraph $H \subseteq G$ is a spanning tree if $V(H)=V(G)$ and $H$ is a tree (i.e. $H$ is connected and contains no cycles).
Mp00247: Graphs de-duplicateGraphs
Mp00259: Graphs vertex additionGraphs
St000261: Graphs ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 50%
Values
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ? = 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ? = 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(2,7),(3,6),(4,5)],8)
=> ? = 0
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(2,3),(4,7),(5,6),(6,7)],8)
=> ? = 0
Description
The edge connectivity of a graph. This is the minimum number of edges that has to be removed to make the graph disconnected.
The following 435 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000322The skewness of a graph. St001578The minimal number of edges to add or remove to make a graph a line graph. St000286The number of connected components of the complement of a graph. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001350Half of the Albertson index of a graph. St001351The Albertson index of a graph. St001521Half the total irregularity of a graph. St001522The total irregularity of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001647The number of edges that can be added without increasing the clique number. St001689The number of celebrities in a graph. St001692The number of vertices with higher degree than the average degree in a graph. St001708The number of pairs of vertices of different degree in a graph. St001742The difference of the maximal and the minimal degree in a graph. St000260The radius of a connected graph. St000287The number of connected components of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000553The number of blocks of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St000916The packing number of a graph. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001352The number of internal nodes in the modular decomposition of a graph. St001463The number of distinct columns in the nullspace of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000095The number of triangles of a graph. St000311The number of vertices of odd degree in a graph. St000312The number of leaves in a graph. St000323The minimal crossing number of a graph. St000370The genus of a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001309The number of four-cliques in a graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001354The number of series nodes in the modular decomposition of a graph. St001395The number of strictly unfriendly partitions of a graph. St001479The number of bridges of a graph. St001573The minimal number of edges to remove to make a graph triangle-free. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001826The maximal number of leaves on a vertex of a graph. St001871The number of triconnected components of a graph. St000273The domination number of a graph. St000344The number of strongly connected outdegree sequences of a graph. St000544The cop number of a graph. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001739The number of graphs with the same edge polytope as the given graph. St001765The number of connected components of the friends and strangers graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St000422The energy of a graph, if it is integral. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001703The villainy of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000258The burning number of a graph. St000918The 2-limited packing number of a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000264The girth of a graph, which is not a tree. St001367The smallest number which does not occur as degree of a vertex in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001271The competition number of a graph. St001568The smallest positive integer that does not appear twice in the partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001651The Frankl number of a lattice. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001060The distinguishing index of a graph. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St000315The number of isolated vertices of a graph. St000069The number of maximal elements of a poset. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000475The number of parts equal to 1 in a partition. St000481The number of upper covers of a partition in dominance order. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001091The number of parts in an integer partition whose next smaller part has the same size. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000003The number of standard Young tableaux of the partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000284The Plancherel distribution on integer partitions. St000346The number of coarsenings of a partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000548The number of different non-empty partial sums of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000759The smallest missing part in an integer partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000897The number of different multiplicities of parts of an integer partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000993The multiplicity of the largest part of an integer partition. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001432The order dimension of the partition. St000511The number of invariant subsets when acting with a permutation of given cycle type. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000068The number of minimal elements in a poset. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001720The minimal length of a chain of small intervals in a lattice. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000454The largest eigenvalue of a graph if it is integral. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St000024The number of double up and double down steps of a Dyck path. St000052The number of valleys of a Dyck path not on the x-axis. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001596The number of two-by-two squares inside a skew partition. St001793The difference between the clique number and the chromatic number of a graph. St001797The number of overfull subgraphs of a graph. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St000075The orbit size of a standard tableau under promotion. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001595The number of standard Young tableaux of the skew partition. St001597The Frobenius rank of a skew partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001256Number of simple reflexive modules that are 2-stable reflexive. St001498The normalised height of a Nakayama algebra with magnitude 1. St001330The hat guessing number of a graph. St001618The cardinality of the Frattini sublattice of a lattice. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001175The size of a partition minus the hook length of the base cell. St001306The number of induced paths on four vertices in a graph. St001353The number of prime nodes in the modular decomposition of a graph. St001356The number of vertices in prime modules of a graph. St000781The number of proper colouring schemes of a Ferrers diagram. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001335The cardinality of a minimal cycle-isolating set of a graph. St000379The number of Hamiltonian cycles in a graph. St000456The monochromatic index of a connected graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000259The diameter of a connected graph. St000143The largest repeated part of a partition. St000185The weighted size of a partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001214The aft of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000146The Andrews-Garvan crank of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000783The side length of the largest staircase partition fitting into a partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St001626The number of maximal proper sublattices of a lattice. St000302The determinant of the distance matrix of a connected graph. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000376The bounce deficit of a Dyck path. St000403The Szeged index minus the Wiener index of a graph. St000448The number of pairs of vertices of a graph with distance 2. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001234The number of indecomposable three dimensional modules with projective dimension one. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001308The number of induced paths on three vertices in a graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001374The Padmakar-Ivan index of a graph. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001577The minimal number of edges to add or remove to make a graph a cograph. St001584The area statistic between a Dyck path and its bounce path. St001648The number of edges that can be added without increasing the chromatic number. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001764The number of non-convex subsets of vertices in a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001799The number of proper separations of a graph. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001910The height of the middle non-run of a Dyck path. St000053The number of valleys of the Dyck path. St000079The number of alternating sign matrices for a given Dyck path. St000093The cardinality of a maximal independent set of vertices of a graph. St000335The difference of lower and upper interactions. St000349The number of different adjacency matrices of a graph. St000443The number of long tunnels of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001057The Grundy value of the game of creating an independent set in a graph. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001481The minimal height of a peak of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001642The Prague dimension of a graph. St001645The pebbling number of a connected graph. St001732The number of peaks visible from the left. St001734The lettericity of a graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001917The order of toric promotion on the set of labellings of a graph. St000678The number of up steps after the last double rise of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001471The magnitude of a Dyck path. St001500The global dimension of magnitude 1 Nakayama algebras. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001531Number of partial orders contained in the poset determined by the Dyck path. St001959The product of the heights of the peaks of a Dyck path. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000699The toughness times the least common multiple of 1,. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000948The chromatic discriminant of a graph. St001119The length of a shortest maximal path in a graph. St001281The normalized isoperimetric number of a graph. St001341The number of edges in the center of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001477The number of nowhere zero 5-flows of a graph. St001478The number of nowhere zero 4-flows of a graph. St001691The number of kings in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001957The number of Hasse diagrams with a given underlying undirected graph. St000917The open packing number of a graph. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001316The domatic number of a graph. St001342The number of vertices in the center of a graph. St001368The number of vertices of maximal degree in a graph. St001672The restrained domination number of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001792The arboricity of a graph. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000406The number of occurrences of the pattern 3241 in a permutation. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001381The fertility of a permutation. St001411The number of patterns 321 or 3412 in a permutation. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001513The number of nested exceedences of a permutation. St001520The number of strict 3-descents. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001715The number of non-records in a permutation. St001728The number of invisible descents of a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001847The number of occurrences of the pattern 1432 in a permutation. St001850The number of Hecke atoms of a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000056The decomposition (or block) number of a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St000486The number of cycles of length at least 3 of a permutation. St000535The rank-width of a graph. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000694The number of affine bounded permutations that project to a given permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001081The number of minimal length factorizations of a permutation into star transpositions. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001349The number of different graphs obtained from the given graph by removing an edge. St001393The induced matching number of a graph. St001461The number of topologically connected components of the chord diagram of a permutation. St001512The minimum rank of a graph. St001590The crossing number of a perfect matching. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001665The number of pure excedances of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St000299The number of nonisomorphic vertex-induced subtrees. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000542The number of left-to-right-minima of a permutation. St001093The detour number of a graph. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001261The Castelnuovo-Mumford regularity of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001674The number of vertices of the largest induced star graph in the graph. St001741The largest integer such that all patterns of this size are contained in the permutation. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St000268The number of strongly connected orientations of a graph. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001071The beta invariant of the graph. St001073The number of nowhere zero 3-flows of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset.