Your data matches 73 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000257
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000257: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1] => [[2,2],[1]]
=> [1]
=> []
=> 0
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> []
=> 0
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2] => [[3,2],[1]]
=> [1]
=> []
=> 0
[3,1] => [[3,3],[2]]
=> [2]
=> []
=> 0
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> []
=> 0
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> []
=> 0
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> []
=> 0
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[2,3] => [[4,2],[1]]
=> [1]
=> []
=> 0
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 0
[3,2] => [[4,3],[2]]
=> [2]
=> []
=> 0
[4,1] => [[4,4],[3]]
=> [3]
=> []
=> 0
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> []
=> 0
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> []
=> 0
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 0
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> []
=> 0
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> []
=> 0
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 0
[2,4] => [[5,2],[1]]
=> [1]
=> []
=> 0
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 1
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 0
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 0
[3,3] => [[5,3],[2]]
=> [2]
=> []
=> 0
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 0
[4,2] => [[5,4],[3]]
=> [3]
=> []
=> 0
[5,1] => [[5,5],[4]]
=> [4]
=> []
=> 0
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> []
=> 0
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> []
=> 0
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> []
=> 0
Description
The number of distinct parts of a partition that occur at least twice. See Section 3.3.1 of [2].
Matching statistic: St001722
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001722: Binary words ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 33%
Values
[2,1] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[2,2] => [2] => [1,1,0,0]
=> 1100 => 1 = 0 + 1
[3,1] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 0 + 1
[1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1 + 1
[2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[2,3] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[3,2] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[4,1] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => ? = 0 + 1
[1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => ? = 0 + 1
[1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 11001100 => ? = 0 + 1
[1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 0 + 1
[1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1 + 1
[1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,2,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 10110010 => ? = 0 + 1
[1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 1 + 1
[2,1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 10110010 => ? = 1 + 1
[2,1,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 1 + 1
[2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,2,1,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 11001100 => ? = 0 + 1
[2,2,2] => [3] => [1,1,1,0,0,0]
=> 111000 => 1 = 0 + 1
[2,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,4] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[3,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 1 + 1
[3,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[3,3] => [2] => [1,1,0,0]
=> 1100 => 1 = 0 + 1
[4,1,1] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[4,2] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[5,1] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,1,1,1,2,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 111100001010 => ? = 0 + 1
[1,1,1,2,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 111000101100 => ? = 0 + 1
[1,1,1,2,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => ? = 0 + 1
[1,1,1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => ? = 0 + 1
[1,1,2,1,1,1] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 110010111000 => ? = 1 + 1
[1,1,2,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => ? = 0 + 1
[1,1,2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => ? = 0 + 1
[1,1,2,3] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 0 + 1
[1,1,3,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => ? = 0 + 1
[1,1,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 0 + 1
[1,1,4,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 0 + 1
[1,2,1,1,1,1] => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 101011110000 => ? = 1 + 1
[1,2,1,1,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1010110010 => ? = 1 + 1
[1,2,1,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1010101010 => ? = 1 + 1
[1,2,1,3] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,2,2,1,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => ? = 0 + 1
[1,2,2,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 10111000 => ? = 0 + 1
[1,2,3,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,2,4] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,3,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 1 + 1
[1,3,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 0 + 1
[1,3,3] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[1,4,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[1,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,5,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,1,1,1,1,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 101111100000 => ? = 1 + 1
[2,1,1,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1011100010 => ? = 1 + 1
[2,1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => ? = 1 + 1
[2,1,1,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 10110010 => ? = 1 + 1
[2,1,2,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => ? = 1 + 1
[2,1,2,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 1 + 1
[2,1,3,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 10101010 => ? = 1 + 1
[2,1,4] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,2,1,1,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => ? = 1 + 1
[2,2,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 11001010 => ? = 0 + 1
[2,2,2,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 11100010 => ? = 0 + 1
[2,2,3] => [2,1] => [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[2,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 10101100 => ? = 0 + 1
[2,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,5] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[3,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 1 + 1
[3,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[3,2,2] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[3,3,1] => [2,1] => [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
[3,4] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[4,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[4,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[4,3] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[5,1,1] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[5,2] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[6,1] => [1,1] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,4,3] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[2,3,3] => [1,2] => [1,0,1,1,0,0]
=> 101100 => 1 = 0 + 1
[2,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[3,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[3,3,2] => [2,1] => [1,1,0,0,1,0]
=> 110010 => 1 = 0 + 1
Description
The number of minimal chains with small intervals between a binary word and the top element. A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. Let $P$ be the lattice on binary words of length $n$, where the covering elements of a word are obtained by replacing a valley with a peak. An interval $[w_1, w_2]$ in $P$ is small if $w_2$ is obtained from $w_1$ by replacing some valleys with peaks. This statistic counts the number of chains $w = w_1 < \dots < w_d = 1\dots 1$ to the top element of minimal length. For example, there are two such chains for the word $0110$: $$ 0110 < 1011 < 1101 < 1110 < 1111 $$ and $$ 0110 < 1010 < 1101 < 1110 < 1111. $$
Mp00184: Integer compositions to threshold graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000205: Integer partitions ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 33%
Values
[2,1] => ([(0,2),(1,2)],3)
=> [2]
=> 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 0
[2,2] => ([(1,3),(2,3)],4)
=> [2]
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 0
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
[2,3] => ([(2,4),(3,4)],5)
=> [2]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> ? = 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> ? = 0
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> 0
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> ? = 0
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> ? = 0
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> ? = 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> ? = 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 0
[2,4] => ([(3,5),(4,5)],6)
=> [2]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 0
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> 0
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [3]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> ? = 0
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> ? = 0
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> ? = 0
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> ? = 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 0
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 0
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [19]
=> ? = 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> ? = 0
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 0
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4]
=> 0
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> ? = 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 0
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 0
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> 0
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [20]
=> ? = 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> ? = 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> ? = 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> 0
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> ? = 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 0
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> 0
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 0
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[2,5] => ([(4,6),(5,6)],7)
=> [2]
=> 0
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> ? = 1
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 1
[3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 0
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [3]
=> 0
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> ? = 1
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 0
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [4]
=> 0
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [5]
=> 0
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6]
=> 0
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Mp00184: Integer compositions to threshold graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000206: Integer partitions ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 33%
Values
[2,1] => ([(0,2),(1,2)],3)
=> [2]
=> 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 0
[2,2] => ([(1,3),(2,3)],4)
=> [2]
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 0
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
[2,3] => ([(2,4),(3,4)],5)
=> [2]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> ? = 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> ? = 0
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> 0
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> ? = 0
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> ? = 0
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> ? = 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> ? = 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 0
[2,4] => ([(3,5),(4,5)],6)
=> [2]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 0
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> 0
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [3]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> ? = 0
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> ? = 0
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> ? = 0
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> ? = 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 0
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 0
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [19]
=> ? = 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> ? = 0
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 0
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4]
=> 0
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> ? = 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 0
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 0
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> 0
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [20]
=> ? = 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> ? = 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> ? = 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> 0
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> ? = 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 0
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 0
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> 0
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 0
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[2,5] => ([(4,6),(5,6)],7)
=> [2]
=> 0
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> ? = 1
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 1
[3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 0
[3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 0
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> 0
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [3]
=> 0
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> ? = 1
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> ? = 0
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> ? = 0
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [4]
=> 0
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [5]
=> 0
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6]
=> 0
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex. See also [[St000205]]. Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St000644
Mp00184: Integer compositions to threshold graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000644: Integer partitions ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 33%
Values
[2,1] => ([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> 0
[2,2] => ([(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
[2,3] => ([(2,4),(3,4)],5)
=> [2]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[2,4] => ([(3,5),(4,5)],6)
=> [2]
=> [1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [19]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 0
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 0
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 0
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 0
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[2,5] => ([(4,6),(5,6)],7)
=> [2]
=> [1,1]
=> 0
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
[3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [3]
=> [1,1,1]
=> 0
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 0
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 0
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 0
Description
The number of graphs with given frequency partition. The frequency partition of a graph on $n$ vertices is the partition obtained from its degree sequence by recording and sorting the frequencies of the numbers that occur. For example, the complete graph on $n$ vertices has frequency partition $(n)$. The path on $n$ vertices has frequency partition $(n-2,2)$, because its degree sequence is $(2,\dots,2,1,1)$. The star graph on $n$ vertices has frequency partition is $(n-1, 1)$, because its degree sequence is $(n-1,1,\dots,1)$. There are two graphs having frequency partition $(2,1)$: the path and an edge together with an isolated vertex.
Matching statistic: St000207
Mp00184: Integer compositions to threshold graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000207: Integer partitions ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 33%
Values
[2,1] => ([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2] => ([(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3] => ([(2,4),(3,4)],5)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,4] => ([(3,5),(4,5)],6)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [19]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,5] => ([(4,6),(5,6)],7)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has all vertices in integer lattice points.
Matching statistic: St000208
Mp00184: Integer compositions to threshold graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000208: Integer partitions ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 33%
Values
[2,1] => ([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2] => ([(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3] => ([(2,4),(3,4)],5)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,4] => ([(3,5),(4,5)],6)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [19]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,5] => ([(4,6),(5,6)],7)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices. See also [[St000205]], [[St000206]] and [[St000207]].
Matching statistic: St001711
Mp00184: Integer compositions to threshold graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001711: Integer partitions ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 33%
Values
[2,1] => ([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2] => ([(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3] => ([(2,4),(3,4)],5)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,4] => ([(3,5),(4,5)],6)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [19]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [20]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[2,5] => ([(4,6),(5,6)],7)
=> [2]
=> [1,1]
=> 1 = 0 + 1
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [18]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[3,4] => ([(3,6),(4,6),(5,6)],7)
=> [3]
=> [1,1,1]
=> 1 = 0 + 1
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 1 + 1
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> [4]
=> [1,1,1,1]
=> 1 = 0 + 1
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
Description
The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. Let $\alpha$ be any permutation of cycle type $\lambda$. This statistic is the number of permutations $\pi$ such that $$ \alpha\pi\alpha^{-1} = \pi^2.$$
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 33%
Values
[2,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,2,1] => [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[2,1,1] => [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[2,2] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[3,1] => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[1,1,2,1] => [1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,2,1,1] => [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,2,2] => [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,3,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[2,1,1,1] => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,1,2] => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[2,2,1] => [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[2,3] => [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,1] => [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[3,2] => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[4,1] => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,1,1,2,1] => [1,1,1,1,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,1,2,1,1] => [1,1,1,2,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,1,2,2] => [2,1,1,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,3,1] => [1,1,1,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,2,1,1,1] => [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,2,1,2] => [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,2,2,1] => [1,1,2,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,2,3] => [3,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,3,1,1] => [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,3,2] => [2,1,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,4,1] => [1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[2,1,1,1,1] => [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[2,1,1,2] => [2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[2,1,2,1] => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[2,1,3] => [3,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,2,1,1] => [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,2,2] => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,3,1] => [1,2,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[2,4] => [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0
[3,1,1,1] => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[3,1,2] => [2,3,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[3,2,1] => [1,3,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[3,3] => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0
[4,1,1] => [1,4,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0
[4,2] => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[5,1] => [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,1,1,1,2,1] => [1,1,1,1,1,2] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,1,1,2,1,1] => [1,1,1,1,2,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,1,1,2,2] => [2,1,1,1,2] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,1,1,3,1] => [1,1,1,1,3] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,1,2,1,1,1] => [1,1,1,2,1,1] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,2,1,2] => [2,1,1,2,1] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,1,2,2,1] => [1,1,1,2,2] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,1,2,3] => [3,1,1,2] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,1,3,1,1] => [1,1,1,3,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,1,3,2] => [2,1,1,3] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,1,4,1] => [1,1,1,4] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,2,1,1,1,1] => [1,1,2,1,1,1] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,1,1,2] => [2,1,2,1,1] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,1,2,1] => [1,1,2,1,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,1,3] => [3,1,2,1] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,2,2,1,1] => [1,1,2,2,1] => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,2,2,2] => [2,1,2,2] => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,2,3,1] => [1,1,2,3] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,2,4] => [4,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,3,1,1,1] => [1,1,3,1,1] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,1,2] => [2,1,3,1] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,3,2,1] => [1,1,3,2] => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,3,3] => [3,1,3] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,4,1,1] => [1,1,4,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[1,4,2] => [2,1,4] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,5,1] => [1,1,5] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[2,1,1,1,1,1] => [1,2,1,1,1,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,1,1,2] => [2,2,1,1,1] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,1,2,1] => [1,2,1,1,2] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,1,3] => [3,2,1,1] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,2,1,1] => [1,2,1,2,1] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,2,2] => [2,2,1,2] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,3,1] => [1,2,1,3] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,4] => [4,2,1] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,2,1,1,1] => [1,2,2,1,1] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,2,1,2] => [2,2,2,1] => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,2,2,1] => [1,2,2,2] => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,2,3] => [3,2,2] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,3,1,1] => [1,2,3,1] => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,3,2] => [2,2,3] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,4,1] => [1,2,4] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[2,5] => [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> 0
[3,1,1,1,1] => [1,3,1,1,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,1,2] => [2,3,1,1] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,2,1] => [1,3,1,2] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,3] => [3,3,1] => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[3,3,1] => [1,3,3] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[3,4] => [4,3] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 0
[4,2,1] => [1,4,2] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[4,3] => [3,4] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[5,1,1] => [1,5,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 0
[5,2] => [2,5] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[6,1] => [1,6] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St000782
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 33%
Values
[2,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[2,2] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? = 0 + 1
[3,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 0 + 1
[1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 0 + 1
[1,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 1 + 1
[2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,2,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[2,3] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[3,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[3,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[4,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? = 0 + 1
[1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> ? = 0 + 1
[1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 0 + 1
[1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 0 + 1
[1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> ? = 1 + 1
[1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 0 + 1
[1,2,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 0 + 1
[1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 0 + 1
[1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> ? = 1 + 1
[2,1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 1 + 1
[2,1,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 1 + 1
[2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,2,1,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 0 + 1
[2,2,2] => [3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 1 = 0 + 1
[2,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,4] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[3,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 1 + 1
[3,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[3,3] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? = 0 + 1
[4,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[4,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[5,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0 + 1
[1,1,1,1,2,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)]
=> ? = 0 + 1
[1,1,1,2,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)]
=> ? = 0 + 1
[1,1,1,2,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> ? = 0 + 1
[1,1,1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? = 0 + 1
[1,1,2,1,1,1] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)]
=> ? = 1 + 1
[1,1,2,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> ? = 0 + 1
[1,1,2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> ? = 0 + 1
[1,1,2,3] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 0 + 1
[1,1,3,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> ? = 0 + 1
[1,1,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 0 + 1
[1,1,4,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 0 + 1
[1,2,1,1,1,1] => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> ? = 1 + 1
[1,2,1,1,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> ? = 1 + 1
[1,2,1,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> ? = 1 + 1
[1,2,1,3] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 0 + 1
[1,2,2,1,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> ? = 0 + 1
[1,2,2,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 0 + 1
[1,2,3,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 0 + 1
[1,2,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,3,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> ? = 1 + 1
[1,3,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 0 + 1
[1,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 0 + 1
[1,3,3] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,4,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 0 + 1
[1,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,5,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,1,1,1,1,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> ? = 1 + 1
[2,1,1,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> ? = 1 + 1
[2,1,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,2,3] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[2,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[3,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[3,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[3,3,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[4,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[4,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[5,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[1,4,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[2,3,3] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[2,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[3,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[3,3,2] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1 = 0 + 1
[3,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[4,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[4,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[4,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[6,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[7,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
[8,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1 = 0 + 1
Description
The indicator function of whether a given perfect matching is an L & P matching. An L&P matching is built inductively as follows: starting with either a single edge, or a hairpin $([1,3],[2,4])$, insert a noncrossing matching or inflate an edge by a ladder, that is, a number of nested edges. The number of L&P matchings is (see [thm. 1, 2]) $$\frac{1}{2} \cdot 4^{n} + \frac{1}{n + 1}{2 \, n \choose n} - {2 \, n + 1 \choose n} + {2 \, n - 1 \choose n - 1}$$
The following 63 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St001793The difference between the clique number and the chromatic number of a graph. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St000916The packing number of a graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St000258The burning number of a graph. St000918The 2-limited packing number of a graph. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001797The number of overfull subgraphs of a graph. St000544The cop number of a graph. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001367The smallest number which does not occur as degree of a vertex in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St000264The girth of a graph, which is not a tree. St000322The skewness of a graph. St001307The number of induced stars on four vertices in a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St000315The number of isolated vertices of a graph. St001578The minimal number of edges to add or remove to make a graph a line graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001765The number of connected components of the friends and strangers graph. St000095The number of triangles of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000286The number of connected components of the complement of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St000031The number of cycles in the cycle decomposition of a permutation. St000741The Colin de Verdière graph invariant.