Processing math: 100%

Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000506
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000506: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 0
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 0
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 0
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 0
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [1]
=> 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [2,2]
=> [2]
=> 0
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 0
Description
The number of standard desarrangement tableaux of shape equal to the given partition. A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry i such that i+1 appears to the right or above i in the tableau (with respect to English tableau notation). This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also: * [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition * [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St000678
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00228: Dyck paths reflect parallelogram polyominoDyck paths
St000678: Dyck paths ⟶ ℤResult quality: 59% values known / values provided: 59%distinct values known / distinct values provided: 100%
Values
([],3)
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([],7)
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1 = 0 + 1
([(5,6)],7)
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
([(4,6),(5,6)],7)
=> [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(3,6),(4,5)],7)
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(3,7),(4,7),(5,7),(6,7)],8)
=> [1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([],8)
=> [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
([(4,7),(5,6),(6,7)],8)
=> [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8)
=> [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8)
=> [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(0,7),(1,6),(2,5),(3,4)],8)
=> [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [1,1,1,1,1,1,2,1,1,1,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [2,1,2,2,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 0 + 1
([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> [1,1,1,1,1,5] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [1,1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [1,1,1,1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [1,1,1,1,1,1,1,1,1,1,5] => ?
=> ?
=> ? = 0 + 1
([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [1,1,1,1,2,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [1,1,1,1,1,1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [1,1,2,1,1,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [1,2,1,1,1,1,1,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> [1,3,2,1,3] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ?
=> ? = 0 + 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [1,1,2,4,1,1,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [1,1,1,1,1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [1,1,1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [1,1,1,1,1,6] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ?
=> ? = 1 + 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [1,1,2,1,1,1,1,1,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [1,1,1,1,1,1,1,1,1,4] => ?
=> ?
=> ? = 1 + 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [1,1,1,1,1,1,1,1,1,5] => ?
=> ?
=> ? = 0 + 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [1,1,1,1,2,1,1,1,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [1,1,1,1,1,2,1,1,1,1,1,1,1,3] => ?
=> ?
=> ? = 0 + 1
([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000755
Mp00250: Graphs clique graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000755: Integer partitions ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 100%
Values
([],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 2 = 1 + 1
([(2,3)],4)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 1 = 0 + 1
([(3,4)],5)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> [6]
=> 2 = 1 + 1
([(4,5)],6)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 2 = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([],7)
=> ([],7)
=> [1,1,1,1,1,1,1]
=> [7]
=> 1 = 0 + 1
([(5,6)],7)
=> ([],6)
=> [1,1,1,1,1,1]
=> [6]
=> 2 = 1 + 1
([(4,6),(5,6)],7)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 2 = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1 = 0 + 1
([(3,6),(4,5)],7)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 2 = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 1 = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 2 = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 1 = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [3,1,1,1,1]
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 2 = 1 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 0 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 2 = 1 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 1 = 0 + 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 0 + 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(4,7),(5,6)],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,6),(5,6)],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(0,7),(1,6),(2,5),(3,4)],8)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ?
=> ?
=> ?
=> ? = 1 + 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ?
=> ?
=> ?
=> ? = 0 + 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> ?
=> ?
=> ?
=> ? = 0 + 1
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. Consider the recurrence f(n)=pλf(np). This statistic returns the number of distinct real roots of the associated characteristic polynomial. For example, the partition (2,1) corresponds to the recurrence f(n)=f(n1)+f(n2) with associated characteristic polynomial x2x1, which has two real roots.
Mp00274: Graphs block-cut treeGraphs
Mp00203: Graphs coneGraphs
St001518: Graphs ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 100%
Values
([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,3)],4)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],5)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,4)],5)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],6)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
([(4,5)],6)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],7)
=> ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(5,6)],7)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 + 1
([(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0 + 1
([(3,6),(4,5)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> ([(3,7),(4,6),(5,6),(5,7)],8)
=> ?
=> ? = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> ([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,8),(3,7),(4,5),(4,6),(5,7),(6,8)],9)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 0 + 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1 + 1
([],8)
=> ?
=> ?
=> ? = 1 + 1
([(4,7),(5,6)],8)
=> ?
=> ?
=> ? = 1 + 1
([(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,6),(5,6)],8)
=> ?
=> ?
=> ? = 1 + 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 1 + 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8)
=> ?
=> ?
=> ? = 1 + 1
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1 + 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,7),(1,6),(2,5),(3,4)],8)
=> ?
=> ?
=> ? = 1 + 1
Description
The number of graphs with the same ordinary spectrum as the given graph.
Matching statistic: St000649
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000649: Permutations ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 100%
Values
([],3)
=> [3] => [1,1,1,0,0,0]
=> [3,2,1] => 0
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 0
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 0
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 0
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 1
([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 0
([(3,5),(4,5)],6)
=> [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => 0
([(2,5),(3,4)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => 0
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 0
([],7)
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 0
([(5,6)],7)
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 1
([(4,6),(5,6)],7)
=> [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => 0
([(3,6),(4,6),(5,6)],7)
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,4,3,2,7,6,5] => 0
([(3,6),(4,5)],7)
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? = 0
([(3,6),(4,5),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => 1
([(2,3),(4,6),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => 1
([(4,5),(4,6),(5,6)],7)
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? = 0
([(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => 0
([(3,5),(3,6),(4,5),(4,6)],7)
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? = 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 0
([(1,6),(2,5),(3,4)],7)
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(1,2),(3,6),(4,5),(5,6)],7)
=> [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => 0
([(2,3),(4,5),(4,6),(5,6)],7)
=> [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,4,3,2,7,6,5] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? = 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 0
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 0
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,2,1,8,7,6,5,4] => ? = 0
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,5,4,8,7,6] => ? = 0
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,7,6] => ? = 0
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,8,7,6] => ? = 0
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,5,4,3,8,7,6] => ? = 0
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,5,8,7,6] => ? = 0
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,5,8,7,6] => ? = 0
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,8,7,6] => ? = 0
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [3,2,1,5,4,8,7,6] => ? = 0
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,3,5,8,7,6] => ? = 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3,8,7,6] => ? = 0
([(3,7),(4,7),(5,7),(6,7)],8)
=> [1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,4,3,2,8,7,6,5] => ? = 1
([],8)
=> [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => ? = 1
([(4,7),(5,6)],8)
=> [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,8,7,6,5,4,3] => ? = 1
([(4,7),(5,6),(6,7)],8)
=> [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,7,6,5,4] => ? = 0
([(4,6),(4,7),(5,6),(5,7)],8)
=> [1,2,5] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,8,7,6,5,4] => ? = 0
([(2,7),(3,7),(4,6),(5,6)],8)
=> [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,8,7,6,5] => ? = 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,7,6] => ? = 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,5,4,3,8,7,6] => ? = 0
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,7,6,5] => ? = 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,5,4,3,2,8,7,6] => ? = 0
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8)
=> [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [4,3,2,1,8,7,6,5] => ? = 1
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [3,2,1,4,8,7,6,5] => ? = 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8)
=> [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,3,5,8,7,6] => ? = 0
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,7,6] => ? = 0
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,4,3,2,5,8,7,6] => ? = 0
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,5,8,7,6] => ? = 0
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3,8,7,6] => ? = 0
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [3,2,1,5,4,8,7,6] => ? = 0
([(0,7),(1,6),(2,5),(3,4)],8)
=> [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [4,3,2,1,8,7,6,5] => ? = 1
Description
The number of 3-excedences of a permutation. This is the number of positions 1in such that σ(i)=i+3.
Matching statistic: St001227
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001227: Dyck paths ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 0 + 3
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 4 = 1 + 3
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 0 + 3
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 3
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 4 = 1 + 3
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 0 + 3
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 0 + 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 0 + 3
([],6)
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1 + 3
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 3
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 4 = 1 + 3
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 0 + 3
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 4 = 1 + 3
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 0 + 3
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 0 + 3
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 4 = 1 + 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 0 + 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 0 + 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 0 + 3
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3 = 0 + 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 0 + 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 0 + 3
([],7)
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 3
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 3
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 3
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4 = 1 + 3
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 0 + 3
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4 = 1 + 3
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4 = 1 + 3
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4 = 1 + 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4 = 1 + 3
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 3 = 0 + 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4 = 1 + 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 4 = 1 + 3
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3 = 0 + 3
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4 = 1 + 3
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 3 = 0 + 3
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4 = 1 + 3
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3 = 0 + 3
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 3 = 0 + 3
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 3
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 1 + 3
([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1 + 3
([(4,7),(5,6)],8)
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1 + 3
([(4,7),(5,6),(6,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 3
([(4,6),(4,7),(5,6),(5,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 3
([(2,7),(3,7),(4,6),(5,6)],8)
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 4 = 1 + 3
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> [5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 1 + 3
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8)
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 4 = 1 + 3
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 4 = 1 + 3
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8)
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 3
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3 = 0 + 3
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3 = 0 + 3
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8)
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3 = 0 + 3
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3 = 0 + 3
([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3 = 0 + 3
Description
The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra.
Mp00264: Graphs delete endpointsGraphs
Mp00203: Graphs coneGraphs
St000309: Graphs ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 100%
Values
([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3)],4)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([],5)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,4)],5)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([],6)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(4,5)],6)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([],7)
=> ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(5,6)],7)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(4,6),(5,6)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,6),(4,5)],7)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,6),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 1
([],8)
=> ?
=> ?
=> ? = 1
([(4,7),(5,6)],8)
=> ?
=> ?
=> ? = 1
([(4,7),(5,6),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 0
([(2,7),(3,7),(4,6),(5,6)],8)
=> ?
=> ?
=> ? = 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ?
=> ? = 0
Description
The number of vertices with even degree.
Matching statistic: St000754
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000754: Perfect matchings ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 0
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 0
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 0
([],6)
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)]
=> ? = 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> ? = 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 0
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 0
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,3),(4,5),(6,7),(8,9),(10,11),(12,13)]
=> ? = 0
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,5),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 0
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 0
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 0
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 0
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(1,2),(3,6),(4,5),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 0
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 0
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 0
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,16),(8,9),(10,11),(12,13),(14,15)]
=> ? = 0
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,16),(12,13),(14,15)]
=> ? = 0
([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,16),(10,11),(12,13),(14,15)]
=> ? = 1
([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,16),(2,3),(4,5),(6,7),(8,9),(10,11),(12,13),(14,15)]
=> ? = 1
([(4,7),(5,6)],8)
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1
([(0,7),(1,6),(2,5),(3,4)],8)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> 0
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> 0
([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> 0
Description
The Grundy value for the game of removing nestings in a perfect matching. A move consists of choosing a nesting, that is two pairs (a,d) and (b,c) with a<b<c<d and replacing them with the two pairs (a,b) and (c,d). The player facing a non-nesting matching looses.
Matching statistic: St001056
Mp00203: Graphs coneGraphs
Mp00274: Graphs block-cut treeGraphs
St001056: Graphs ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 100%
Values
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(0,7),(1,2),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,7),(1,2),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
Description
The Grundy value for the game of deleting vertices of a graph until it has no edges.
Matching statistic: St001057
Mp00203: Graphs coneGraphs
Mp00274: Graphs block-cut treeGraphs
St001057: Graphs ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 100%
Values
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(0,7),(1,2),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 + 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,7),(1,2),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 + 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
Description
The Grundy value of the game of creating an independent set in a graph. Two players alternately add a vertex to an initially empty set, which is not adjacent to any of the vertices it already contains. Alternatively, the game can be described as starting with a graph, the players remove vertices together with their neighbors, until the graph is empty.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001386The number of prime labellings of a graph.