Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00066: Permutations inversePermutations
St000696: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [1] => 2
[.,[.,.]]
=> [2,1] => [1,2] => [1,2] => 3
[[.,.],.]
=> [1,2] => [1,2] => [1,2] => 3
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 4
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [1,2,3] => 4
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => [1,2,3] => 4
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => [1,3,2] => 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2,3] => 4
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 5
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => [1,2,3,4] => 5
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => [1,2,3,4] => 5
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => [1,2,4,3] => 3
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 5
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => [1,2,3,4] => 5
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => [1,2,3,4] => 5
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => [1,3,2,4] => 3
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => [1,2,3,4] => 5
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => [1,3,4,2] => 3
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => [1,3,4,2] => 3
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => [1,2,4,3] => 3
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => [1,4,2,3] => 3
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 5
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => [1,2,3,5,4] => 4
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => [1,2,4,3,5] => 4
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => [1,2,4,5,3] => 4
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => [1,2,4,5,3] => 4
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => [1,2,3,5,4] => 4
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => [1,2,5,3,4] => 4
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [1,2,3,5,4] => 4
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [1,3,2,4,5] => 4
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => [1,3,2,4,5] => 4
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => 6
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [1,3,4,2,5] => 4
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => [1,3,4,2,5] => 4
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [1,2,4,3,5] => 4
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [1,4,2,3,5] => 4
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [1,2,3,4,5] => 6
Description
The number of cycles in the breakpoint graph of a permutation. The breakpoint graph of a permutation $\pi_1,\dots,\pi_n$ is the directed, bicoloured graph with vertices $0,\dots,n$, a grey edge from $i$ to $i+1$ and a black edge from $\pi_i$ to $\pi_{i-1}$ for $0\leq i\leq n$, all indices taken modulo $n+1$. This graph decomposes into alternating cycles, which this statistic counts. The distribution of this statistic on permutations of $n-1$ is, according to [cor.1, 5] and [eq.6, 6], given by $$ \frac{1}{n(n+1)}((q+n)_{n+1}-(q)_{n+1}), $$ where $(x)_n=x(x-1)\dots(x-n+1)$.
Mp00018: Binary trees left border symmetryBinary trees
Mp00016: Binary trees left-right symmetryBinary trees
St000385: Binary trees ⟶ ℤResult quality: 80% values known / values provided: 88%distinct values known / distinct values provided: 80%
Values
[.,.]
=> [.,.]
=> [.,.]
=> ? = 2 - 2
[.,[.,.]]
=> [.,[.,.]]
=> [[.,.],.]
=> 1 = 3 - 2
[[.,.],.]
=> [[.,.],.]
=> [.,[.,.]]
=> 1 = 3 - 2
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [[[.,.],.],.]
=> 2 = 4 - 2
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [[.,[.,.]],.]
=> 2 = 4 - 2
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [.,[[.,.],.]]
=> 2 = 4 - 2
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [[.,.],[.,.]]
=> 0 = 2 - 2
[[[.,.],.],.]
=> [[[.,.],.],.]
=> [.,[.,[.,.]]]
=> 2 = 4 - 2
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> 3 = 5 - 2
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> 3 = 5 - 2
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> 3 = 5 - 2
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> 1 = 3 - 2
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> 3 = 5 - 2
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> 3 = 5 - 2
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> 3 = 5 - 2
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> 1 = 3 - 2
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> 3 = 5 - 2
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> 1 = 3 - 2
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> 1 = 3 - 2
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> 1 = 3 - 2
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> 1 = 3 - 2
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> 3 = 5 - 2
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> 4 = 6 - 2
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> 4 = 6 - 2
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> 4 = 6 - 2
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> 2 = 4 - 2
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> 4 = 6 - 2
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> 4 = 6 - 2
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> 4 = 6 - 2
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> 2 = 4 - 2
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> 4 = 6 - 2
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> 2 = 4 - 2
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> 2 = 4 - 2
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 2 = 4 - 2
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> 2 = 4 - 2
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> 4 = 6 - 2
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [.,[[[[.,.],.],.],.]]
=> 4 = 6 - 2
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> [.,[[[.,[.,.]],.],.]]
=> 4 = 6 - 2
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [.,[[.,[[.,.],.]],.]]
=> 4 = 6 - 2
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],.]]
=> 2 = 4 - 2
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],.]]
=> 4 = 6 - 2
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> 2 = 4 - 2
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> 2 = 4 - 2
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [.,[.,[[[.,.],.],.]]]
=> 4 = 6 - 2
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> [.,[.,[[.,[.,.]],.]]]
=> 4 = 6 - 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> 2 = 4 - 2
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> 2 = 4 - 2
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],.]]]
=> 2 = 4 - 2
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> 2 = 4 - 2
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> [.,[.,[.,[[.,.],.]]]]
=> 4 = 6 - 2
[[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> 2 = 4 - 2
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [[[[[[[[.,.],.],.],.],.],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [[[[[[[.,[.,.]],.],.],.],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [[[[[[[.,.],[.,.]],.],.],.],.],.]
=> ? = 7 - 2
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> [.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [[[[[.,[[.,[.,.]],.]],.],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [[[[[.,[[.,.],[.,.]]],.],.],.],.]
=> ? = 7 - 2
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> [[[[[[.,.],[.,[.,.]]],.],.],.],.]
=> ? = 7 - 2
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [[[[.,[[[[.,.],.],.],.]],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> [.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> [[[[.,[[[.,[.,.]],.],.]],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [[[[.,[[.,[[.,.],.]],.]],.],.],.]
=> ? = 9 - 2
[.,[.,[.,[[[[.,.],.],[.,.]],.]]]]
=> [.,[.,[.,[[[[.,.],[.,.]],.],.]]]]
=> [[[[.,[.,[[.,.],[.,.]]]],.],.],.]
=> ? = 7 - 2
[.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> [.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> ? = 9 - 2
[.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [[[.,[[[[[.,.],.],.],.],.]],.],.]
=> ? = 9 - 2
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> [[[.,[[[[.,[.,.]],.],.],.]],.],.]
=> ? = 9 - 2
[.,[.,[[.,.],[.,[[.,.],[.,.]]]]]]
=> [.,[.,[[.,[.,[[.,[.,.]],.]]],.]]]
=> [[[.,[[[.,[[.,.],.]],.],.]],.],.]
=> ? = 9 - 2
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [.,[.,[[.,[[.,[.,[.,.]]],.]],.]]]
=> [[[.,[[.,[[[.,.],.],.]],.]],.],.]
=> ? = 9 - 2
[.,[.,[[.,.],[[[[.,.],.],.],.]]]]
=> [.,[.,[[.,[[[[.,.],.],.],.]],.]]]
=> [[[.,[[.,[.,[.,[.,.]]]],.]],.],.]
=> ? = 9 - 2
[.,[.,[[[.,.],.],[[[.,.],.],.]]]]
=> [.,[.,[[[.,[[[.,.],.],.]],.],.]]]
=> [[[.,[.,[[.,[.,[.,.]]],.]]],.],.]
=> ? = 9 - 2
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [[[[[[[.,.],.],.],.],[.,.]],.],.]
=> ? = 7 - 2
[.,[.,[[.,[[[[.,.],.],.],.]],.]]]
=> [.,[.,[[.,.],[[[[.,.],.],.],.]]]]
=> [[[[.,[.,[.,[.,.]]]],[.,.]],.],.]
=> ? = 7 - 2
[.,[.,[[[[[.,.],.],[.,.]],.],.]]]
=> [.,[.,[[[[[.,.],.],[.,.]],.],.]]]
=> [[[.,[.,[[.,.],[.,[.,.]]]]],.],.]
=> ? = 7 - 2
[.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> [[[[.,.],[.,[.,[.,[.,.]]]]],.],.]
=> ? = 7 - 2
[.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [[.,[[[[[[.,.],.],.],.],.],.]],.]
=> ? = 9 - 2
[.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [.,[[.,[.,[.,[.,[[.,.],.]]]]],.]]
=> [[.,[[[[[.,[.,.]],.],.],.],.]],.]
=> ? = 9 - 2
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> [[.,[[[[.,[[.,.],.]],.],.],.]],.]
=> ? = 9 - 2
[.,[[.,.],[.,[[.,.],[.,[.,.]]]]]]
=> [.,[[.,[.,[[.,[.,[.,.]]],.]]],.]]
=> [[.,[[[.,[[[.,.],.],.]],.],.]],.]
=> ? = 9 - 2
[.,[[.,.],[.,[[[[.,.],.],.],.]]]]
=> [.,[[.,[.,[[[[.,.],.],.],.]]],.]]
=> [[.,[[[.,[.,[.,[.,.]]]],.],.]],.]
=> ? = 9 - 2
[.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> [[.,[[.,[[[[.,.],.],.],.]],.]],.]
=> ? = 9 - 2
[.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [[.,[[.,[[.,[[.,.],.]],.]],.]],.]
=> ? = 9 - 2
[.,[[.,.],[[[[[.,.],.],.],.],.]]]
=> [.,[[.,[[[[[.,.],.],.],.],.]],.]]
=> [[.,[[.,[.,[.,[.,[.,.]]]]],.]],.]
=> ? = 9 - 2
[.,[[[.,.],.],[.,[.,[.,[.,.]]]]]]
=> [.,[[[.,[.,[.,[.,[.,.]]]]],.],.]]
=> [[.,[.,[[[[[.,.],.],.],.],.]]],.]
=> ? = 9 - 2
[.,[[[.,.],.],[.,[[[.,.],.],.]]]]
=> [.,[[[.,[.,[[[.,.],.],.]]],.],.]]
=> [[.,[.,[[[.,[.,[.,.]]],.],.]]],.]
=> ? = 9 - 2
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [.,[[[.,[[[.,[.,.]],.],.]],.],.]]
=> [[.,[.,[[.,[.,[[.,.],.]]],.]]],.]
=> ? = 9 - 2
[.,[[[.,.],.],[[[[.,.],.],.],.]]]
=> [.,[[[.,[[[[.,.],.],.],.]],.],.]]
=> [[.,[.,[[.,[.,[.,[.,.]]]],.]]],.]
=> ? = 9 - 2
[.,[[[.,.],[.,[.,[.,[.,.]]]]],.]]
=> [.,[[[.,.],[.,[.,[.,[.,.]]]]],.]]
=> [[.,[[[[[.,.],.],.],.],[.,.]]],.]
=> ? = 7 - 2
[.,[[[.,.],[[.,.],[[.,.],.]]],.]]
=> [.,[[[.,.],[[.,[[.,.],.]],.]],.]]
=> [[.,[[.,[[.,[.,.]],.]],[.,.]]],.]
=> ? = 7 - 2
[.,[[[.,.],[[[[.,.],.],.],.]],.]]
=> [.,[[[.,.],[[[[.,.],.],.],.]],.]]
=> [[.,[[.,[.,[.,[.,.]]]],[.,.]]],.]
=> ? = 7 - 2
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> [[.,[[.,.],[.,[.,[.,[.,.]]]]]],.]
=> ? = 7 - 2
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> ? = 9 - 2
[[[[[.,[.,[.,.]]],.],.],.],[.,.]]
=> [[[[[.,[.,.]],.],.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ? = 7 - 2
[[.,[[.,[[.,[[.,.],.]],.]],.]],.]
=> [[.,.],[[.,.],[[.,.],[[.,.],.]]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> ? = 3 - 2
[[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,[.,[.,[.,.]]]]]
=> ? = 7 - 2
[[[[[.,[[[.,.],.],.]],.],.],.],.]
=> [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,[.,[.,[.,.]]]]]
=> ? = 7 - 2
[[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 7 - 2
[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [[[[[[[[[.,.],.],.],.],.],.],.],.],.]
=> ? = 10 - 2
[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> [[[[[[[[.,[.,.]],.],.],.],.],.],.],.]
=> ? = 10 - 2
[.,[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]]
=> [[[[[[[.,[.,[.,.]]],.],.],.],.],.],.]
=> ? = 10 - 2
[.,[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [.,[[[[[[[[.,.],.],.],.],.],.],.],.]]
=> [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> ? = 10 - 2
Description
The number of vertices with out-degree 1 in a binary tree. See the references for several connections of this statistic. In particular, the number $T(n,k)$ of binary trees with $n$ vertices and $k$ out-degree $1$ vertices is given by $T(n,k) = 0$ for $n-k$ odd and $$T(n,k)=\frac{2^k}{n+1}\binom{n+1}{k}\binom{n+1-k}{(n-k)/2}$$ for $n-k$ is even.
Matching statistic: St000776
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00160: Permutations graph of inversionsGraphs
St000776: Graphs ⟶ ℤResult quality: 70% values known / values provided: 77%distinct values known / distinct values provided: 70%
Values
[.,.]
=> [1] => [1] => ([],1)
=> 1 = 2 - 1
[.,[.,.]]
=> [2,1] => [1,2] => ([],2)
=> 2 = 3 - 1
[[.,.],.]
=> [1,2] => [1,2] => ([],2)
=> 2 = 3 - 1
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => ([],3)
=> 3 = 4 - 1
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => ([],3)
=> 3 = 4 - 1
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => ([],3)
=> 3 = 4 - 1
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => ([(1,2)],3)
=> 1 = 2 - 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => ([],3)
=> 3 = 4 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => ([(2,3)],4)
=> 2 = 3 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => ([(2,3)],4)
=> 2 = 3 - 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => ([(2,3)],4)
=> 2 = 3 - 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => ([(3,4)],5)
=> 3 = 4 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => ([(3,4)],5)
=> 3 = 4 - 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => ([(3,4)],5)
=> 3 = 4 - 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => ([(3,4)],5)
=> 3 = 4 - 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 3 = 4 - 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 3 = 4 - 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => ([(3,4)],5)
=> 3 = 4 - 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => ([],5)
=> 5 = 6 - 1
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [7,8,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [7,6,8,5,4,3,2,1] => [1,2,3,4,5,6,8,7] => ([(6,7)],8)
=> ? = 7 - 1
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [6,7,8,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> [7,8,5,6,4,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [7,5,6,8,4,3,2,1] => [1,2,3,4,5,6,8,7] => ([(6,7)],8)
=> ? = 7 - 1
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [6,5,7,8,4,3,2,1] => [1,2,3,4,5,7,8,6] => ([(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [8,7,6,4,5,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> [7,8,6,4,5,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [8,6,7,4,5,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[.,[[[[.,.],.],[.,.]],.]]]]
=> [7,4,5,6,8,3,2,1] => [1,2,3,4,5,6,8,7] => ([(6,7)],8)
=> ? = 7 - 1
[.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> [4,5,6,7,8,3,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [8,7,6,5,3,4,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [7,8,6,5,3,4,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[.,[[.,.],[.,.]]]]]]
=> [8,6,7,5,3,4,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [8,7,5,6,3,4,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[[[[.,.],.],.],.]]]]
=> [5,6,7,8,3,4,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[[[.,.],.],[[[.,.],.],.]]]]
=> [6,7,8,3,4,5,2,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [7,6,5,4,3,8,2,1] => [1,2,3,8,4,5,6,7] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[.,[[.,[[[[.,.],.],.],.]],.]]]
=> [4,5,6,7,3,8,2,1] => [1,2,3,8,4,5,6,7] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[.,[[[[[.,.],.],[.,.]],.],.]]]
=> [6,3,4,5,7,8,2,1] => [1,2,3,4,5,7,8,6] => ([(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [4,3,5,6,7,8,2,1] => [1,2,3,5,6,7,8,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [8,7,6,5,4,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [7,8,6,5,4,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [8,6,7,5,4,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[[.,.],[.,[.,.]]]]]]
=> [8,7,5,6,4,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[[[[.,.],.],.],.]]]]
=> [5,6,7,8,4,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [8,7,6,4,5,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [8,6,7,4,5,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[.,.],[[[[[.,.],.],.],.],.]]]
=> [4,5,6,7,8,2,3,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[.,[.,[.,[.,.]]]]]]
=> [8,7,6,5,2,3,4,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[.,[[[.,.],.],.]]]]
=> [6,7,8,5,2,3,4,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [8,5,6,7,2,3,4,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[[[[.,.],.],.],.]]]
=> [5,6,7,8,2,3,4,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[.,[[[.,.],[.,[.,[.,[.,.]]]]],.]]
=> [7,6,5,4,2,3,8,1] => [1,2,3,8,4,5,6,7] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[[[.,.],[[.,.],[[.,.],.]]],.]]
=> [6,7,4,5,2,3,8,1] => [1,2,3,8,4,5,6,7] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[[[.,.],[[[[.,.],.],.],.]],.]]
=> [4,5,6,7,2,3,8,1] => [1,2,3,8,4,5,6,7] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [4,2,3,5,6,7,8,1] => [1,2,3,5,6,7,8,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7 - 1
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [2,3,4,5,6,7,8,1] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [8,7,6,5,4,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [7,8,6,5,4,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [8,6,7,5,4,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [8,7,5,6,4,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> [6,5,7,8,4,3,1,2] => [1,2,3,4,5,7,8,6] => ([(5,7),(6,7)],8)
=> ? = 7 - 1
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [5,6,7,8,4,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [8,7,6,4,5,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [7,8,6,4,5,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[.,[[[[[.,.],.],.],.],.]]]
=> [4,5,6,7,8,3,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
[[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> [8,7,6,5,3,4,1,2] => [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 9 - 1
Description
The maximal multiplicity of an eigenvalue in a graph.
Mp00018: Binary trees left border symmetryBinary trees
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
St000986: Graphs ⟶ ℤResult quality: 70% values known / values provided: 77%distinct values known / distinct values provided: 70%
Values
[.,.]
=> [.,.]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
[.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 3 - 1
[[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 2 = 3 - 1
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 4 - 1
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 4 - 1
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 4 - 1
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 4 - 1
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 3 - 1
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 3 - 1
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 4 - 1
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 4 - 1
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 3 = 4 - 1
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> [.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> [.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[.,[[[[.,.],.],[.,.]],.]]]]
=> [.,[.,[.,[[[[.,.],[.,.]],.],.]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> [.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[.,[[.,.],[.,.]]]]]]
=> [.,[.,[[.,[.,[[.,[.,.]],.]]],.]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [.,[.,[[.,[[.,[.,[.,.]]],.]],.]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[[.,.],[[[[.,.],.],.],.]]]]
=> [.,[.,[[.,[[[[.,.],.],.],.]],.]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[[[.,.],.],[[[.,.],.],.]]]]
=> [.,[.,[[[.,[[[.,.],.],.]],.],.]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[.,[[.,[[[[.,.],.],.],.]],.]]]
=> [.,[.,[[.,.],[[[[.,.],.],.],.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[.,[[[[[.,.],.],[.,.]],.],.]]]
=> [.,[.,[[[[[.,.],.],[.,.]],.],.]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [.,[[.,[.,[.,[.,[[.,.],.]]]]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[[.,.],[.,[.,.]]]]]]
=> [.,[[.,[.,[[.,[.,[.,.]]],.]]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[.,.],[.,[[[[.,.],.],.],.]]]]
=> [.,[[.,[.,[[[[.,.],.],.],.]]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [.,[[.,[[.,[.,[.,[.,.]]]],.]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[.,.],[[[[[.,.],.],.],.],.]]]
=> [.,[[.,[[[[[.,.],.],.],.],.]],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[.,[.,[.,[.,.]]]]]]
=> [.,[[[.,[.,[.,[.,[.,.]]]]],.],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[.,[[[.,.],.],.]]]]
=> [.,[[[.,[.,[[[.,.],.],.]]],.],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [.,[[[.,[[[.,[.,.]],.],.]],.],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[[.,.],.],[[[[.,.],.],.],.]]]
=> [.,[[[.,[[[[.,.],.],.],.]],.],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[.,[[[.,.],[.,[.,[.,[.,.]]]]],.]]
=> [.,[[[.,.],[.,[.,[.,[.,.]]]]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[.,.],[[.,.],[[.,.],.]]],.]]
=> [.,[[[.,.],[[.,[[.,.],.]],.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[.,.],[[[[.,.],.],.],.]],.]]
=> [.,[[[.,.],[[[[.,.],.],.],.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ?
=> ? = 7 - 1
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [.,[[[[[[[.,.],.],.],.],.],.],.]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [[.,[.,[.,[.,[.,[[.,.],.]]]]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [[.,[.,[.,[.,[[.,[.,.]],.]]]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [[.,[.,[.,[[.,[.,[.,.]]],.]]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> [[.,[.,[.,[[[.,.],.],[.,.]]]]],.]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 7 - 1
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [[.,[.,[.,[[[[.,.],.],.],.]]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [[.,[.,[[.,[.,[.,[.,.]]]],.]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [[.,[.,[[.,[.,[[.,.],.]]],.]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[.,[[[[[.,.],.],.],.],.]]]
=> [[.,[.,[[[[[.,.],.],.],.],.]]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
[[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> [[.,[[.,[.,[.,[.,[.,.]]]]],.]],.]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 9 - 1
Description
The multiplicity of the eigenvalue zero of the adjacency matrix of the graph.
Matching statistic: St001641
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00215: Set partitions Wachs-WhiteSet partitions
St001641: Set partitions ⟶ ℤResult quality: 70% values known / values provided: 77%distinct values known / distinct values provided: 70%
Values
[.,.]
=> [1,0]
=> {{1}}
=> {{1}}
=> 0 = 2 - 2
[.,[.,.]]
=> [1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 1 = 3 - 2
[[.,.],.]
=> [1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 1 = 3 - 2
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 2 = 4 - 2
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,2},{3}}
=> 2 = 4 - 2
[[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 2 = 4 - 2
[[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 0 = 2 - 2
[[[.,.],.],.]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 2 = 4 - 2
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 3 = 5 - 2
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> 3 = 5 - 2
[.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 3 = 5 - 2
[.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1 = 3 - 2
[.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> 3 = 5 - 2
[[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 3 = 5 - 2
[[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 3 = 5 - 2
[[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1 = 3 - 2
[[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 3 = 5 - 2
[[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 1 = 3 - 2
[[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 1 = 3 - 2
[[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> 1 = 3 - 2
[[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,3},{2,4}}
=> 1 = 3 - 2
[[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 3 = 5 - 2
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 4 = 6 - 2
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> 4 = 6 - 2
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> 4 = 6 - 2
[.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> 2 = 4 - 2
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> 4 = 6 - 2
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> 4 = 6 - 2
[.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> 4 = 6 - 2
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 2 = 4 - 2
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> 4 = 6 - 2
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> 2 = 4 - 2
[.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,2,4},{3},{5}}
=> 2 = 4 - 2
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> 2 = 4 - 2
[.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,4},{5}}
=> 2 = 4 - 2
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> 4 = 6 - 2
[[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 4 = 6 - 2
[[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> 4 = 6 - 2
[[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 4 = 6 - 2
[[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 2 = 4 - 2
[[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> 4 = 6 - 2
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 2 = 4 - 2
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> 2 = 4 - 2
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 4 = 6 - 2
[[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> 4 = 6 - 2
[[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 2 = 4 - 2
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> 2 = 4 - 2
[[[.,.],[.,.]],[.,.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> {{1},{2,5},{3,4}}
=> 2 = 4 - 2
[[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> {{1},{2,4},{3,5}}
=> 2 = 4 - 2
[[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> 4 = 6 - 2
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3},{4},{5},{6,8},{7}}
=> {{1,3},{2},{4},{5},{6},{7},{8}}
=> ? = 7 - 2
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6},{7,8}}
=> {{1,2},{3,4},{5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> {{1},{2},{3},{4},{5,8},{6,7}}
=> {{1,4},{2,3},{5},{6},{7},{8}}
=> ? = 7 - 2
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> {{1},{2},{3},{4},{5,6,8},{7}}
=> {{1,3},{2,4},{5},{6},{7},{8}}
=> ? = 7 - 2
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4,5},{6},{7},{8}}
=> {{1},{2},{3},{4,5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5},{6},{7,8}}
=> {{1,2},{3},{4,5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4,5},{6,7},{8}}
=> {{1},{2,3},{4,5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[.,[[[[.,.],.],[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> {{1},{2},{3},{4,8},{5,6,7}}
=> {{1,5},{2,3,4},{6},{7},{8}}
=> ? = 7 - 2
[.,[.,[.,[[[[[.,.],.],.],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2},{3},{4,5,6,7,8}}
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 9 - 2
[.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3,4},{5},{6},{7},{8}}
=> ?
=> ? = 9 - 2
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> {{1,2},{3},{4},{5,6},{7},{8}}
=> ? = 9 - 2
[.,[.,[[.,.],[.,[[.,.],[.,.]]]]]]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5},{6,7},{8}}
=> ?
=> ? = 9 - 2
[.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3,4},{5,6},{7},{8}}
=> {{1},{2},{3,4},{5,6},{7},{8}}
=> ? = 9 - 2
[.,[.,[[.,.],[[[[.,.],.],.],.]]]]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> {{1,2,3,4},{5,6},{7},{8}}
=> ? = 9 - 2
[.,[.,[[[.,.],.],[[[.,.],.],.]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> {{1,2,3},{4,5,6},{7},{8}}
=> ? = 9 - 2
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> {{1},{2},{3,8},{4},{5},{6},{7}}
=> {{1,6},{2},{3},{4},{5},{7},{8}}
=> ? = 7 - 2
[.,[.,[[.,[[[[.,.],.],.],.]],.]]]
=> [1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> {{1},{2},{3,5,6,7,8},{4}}
=> {{1,2,3,4,6},{5},{7},{8}}
=> ? = 7 - 2
[.,[.,[[[[[.,.],.],[.,.]],.],.]]]
=> [1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> {{1},{2},{3,4,8},{5,6,7}}
=> {{1,5},{2,3,4,6},{7},{8}}
=> ? = 7 - 2
[.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> {{1},{2},{3,4,5,6,8},{7}}
=> {{1,3},{2,4,5,6},{7},{8}}
=> ? = 7 - 2
[.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6},{7},{8}}
=> {{1},{2},{3},{4},{5},{6,7},{8}}
=> ? = 9 - 2
[.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> {{1,2},{3},{4},{5},{6,7},{8}}
=> ? = 9 - 2
[.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4},{5},{6,7},{8}}
=> {{1},{2,3},{4},{5},{6,7},{8}}
=> ? = 9 - 2
[.,[[.,.],[.,[[.,.],[.,[.,.]]]]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5,6},{7},{8}}
=> ?
=> ? = 9 - 2
[.,[[.,.],[.,[[[[.,.],.],.],.]]]]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> {{1,2,3,4},{5},{6,7},{8}}
=> ? = 9 - 2
[.,[[.,.],[[.,.],[.,[.,[.,.]]]]]]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2,3},{4,5},{6},{7},{8}}
=> {{1},{2},{3},{4,5},{6,7},{8}}
=> ? = 9 - 2
[.,[[.,.],[[.,.],[[.,.],[.,.]]]]]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2,3},{4,5},{6,7},{8}}
=> {{1},{2,3},{4,5},{6,7},{8}}
=> ? = 9 - 2
[.,[[.,.],[[[[[.,.],.],.],.],.]]]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> {{1,2,3,4,5},{6,7},{8}}
=> ? = 9 - 2
[.,[[[.,.],.],[.,[.,[.,[.,.]]]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6},{7},{8}}
=> {{1},{2},{3},{4},{5,6,7},{8}}
=> ? = 9 - 2
[.,[[[.,.],.],[.,[[[.,.],.],.]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3,4},{5},{6,7,8}}
=> {{1,2,3},{4},{5,6,7},{8}}
=> ? = 9 - 2
[.,[[[.,.],.],[[[.,.],.],[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5,6,7},{8}}
=> {{1},{2,3,4},{5,6,7},{8}}
=> ? = 9 - 2
[.,[[[.,.],.],[[[[.,.],.],.],.]]]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4},{5,6,7,8}}
=> {{1,2,3,4},{5,6,7},{8}}
=> ? = 9 - 2
[.,[[[.,.],[.,[.,[.,[.,.]]]]],.]]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> {{1},{2,8},{3,4},{5},{6},{7}}
=> {{1,7},{2},{3},{4},{5,6},{8}}
=> ? = 7 - 2
[.,[[[.,.],[[.,.],[[.,.],.]]],.]]
=> [1,0,1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> {{1},{2,7,8},{3,4},{5,6}}
=> {{1,2,7},{3,4},{5,6},{8}}
=> ? = 7 - 2
[.,[[[.,.],[[[[.,.],.],.],.]],.]]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> {{1},{2,5,6,7,8},{3,4}}
=> {{1,2,3,4,7},{5,6},{8}}
=> ? = 7 - 2
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> {{1},{2,3,4,5,8},{6,7}}
=> {{1,4},{2,3,5,6,7},{8}}
=> ? = 7 - 2
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,8}}
=> {{1,2,3,4,5,6,7},{8}}
=> ? = 9 - 2
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6},{7},{8}}
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 9 - 2
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 9 - 2
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4},{5},{6,7},{8}}
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 9 - 2
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4},{5,6},{7},{8}}
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> ? = 9 - 2
[[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,1,0,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> {{1,2},{3},{4},{5,6,8},{7}}
=> ?
=> ? = 7 - 2
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> {{1,2,3,4},{5},{6},{7,8}}
=> ? = 9 - 2
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4,5},{6},{7},{8}}
=> {{1},{2},{3},{4,5},{6},{7,8}}
=> ? = 9 - 2
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5},{6},{7,8}}
=> ?
=> ? = 9 - 2
[[.,.],[.,[[[[[.,.],.],.],.],.]]]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2},{3},{4,5,6,7,8}}
=> {{1,2,3,4,5},{6},{7,8}}
=> ? = 9 - 2
[[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6},{7},{8}}
=> {{1},{2},{3},{4},{5,6},{7,8}}
=> ? = 9 - 2
Description
The number of ascent tops in the flattened set partition such that all smaller elements appear before. Let $P$ be a set partition. The flattened set partition is the permutation obtained by sorting the set of blocks of $P$ according to their minimal element and the elements in each block in increasing order. Given a set partition $P$, this statistic is the binary logarithm of the number of set partitions that flatten to the same permutation as $P$.
Mp00018: Binary trees left border symmetryBinary trees
Mp00013: Binary trees to posetPosets
St001631: Posets ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 70%
Values
[.,.]
=> [.,.]
=> ([],1)
=> 0 = 2 - 2
[.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 1 = 3 - 2
[[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1 = 3 - 2
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
[[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 1 = 3 - 2
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 3 - 2
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 3 - 2
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 3 - 2
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1 = 3 - 2
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 3 - 2
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 4 - 2
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 4 - 2
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 4 - 2
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 4 - 2
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 4 - 2
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 4 - 2
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 4 - 2
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 4 - 2
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 4 - 2
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 4 - 2
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 4 - 2
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 4 - 2
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 4 - 2
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 6 - 2
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 6 - 2
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [.,[.,[.,[[[.,.],.],[.,.]]]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [.,[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [.,[.,[[[.,[.,.]],.],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [.,[.,[[.,.],[.,[[.,.],.]]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [.,[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? = 4 - 2
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [.,[.,[[.,.],[[[.,.],.],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [.,[.,[[[.,.],[.,[.,.]]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? = 4 - 2
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [.,[.,[[[.,.],.],[[.,.],.]]]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [.,[.,[[[[.,.],.],.],[.,.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 6 - 2
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [.,[[.,[[.,.],[.,[.,.]]]],.]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [.,[[.,[[.,.],[[.,.],.]]],.]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [.,[[.,[[[.,.],[.,.]],.]],.]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 6 - 2
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> [.,[[.,[[[.,.],.],[.,.]]],.]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 2
[.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [.,[[.,[.,[[.,.],.]]],[.,.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [.,[[.,[[.,[.,.]],.]],[.,.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [.,[[.,[[.,.],[.,.]]],[.,.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ? = 4 - 2
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [.,[[.,[[[.,.],.],.]],[.,.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 6 - 2
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> [.,[[[.,[[.,.],[.,.]]],.],.]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 6 - 2
[.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[.,[.,.]]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[.,[.,.]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[[.,.],.]],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],[[.,.],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[[.,.],.]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[[.,.],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 2
[.,[[[.,.],[.,.]],[.,[.,.]]]]
=> [.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[[[.,.],[.,.]],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 2
[.,[[[.,[.,.]],.],[.,[.,.]]]]
=> [.,[[[.,[.,[.,.]]],.],[.,.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 6 - 2
[.,[[[.,[.,.]],.],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],.],[.,.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[.,[[.,.],.]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[[.,.],.]]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[[.,.],[.,.]]],[.,.]]]
=> [.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 2
[.,[[.,[[.,[.,.]],.]],[.,.]]]
=> [.,[[.,[.,.]],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ? = 4 - 2
Description
The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset.
Matching statistic: St001032
Mp00018: Binary trees left border symmetryBinary trees
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001032: Dyck paths ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 60%
Values
[.,.]
=> [.,.]
=> [1,0]
=> [1,1,0,0]
=> 0 = 2 - 2
[.,[.,.]]
=> [.,[.,.]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 3 - 2
[[.,.],.]
=> [[.,.],.]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1 = 3 - 2
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 4 - 2
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 4 - 2
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 4 - 2
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 2 - 2
[[[.,.],.],.]
=> [[[.,.],.],.]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 4 - 2
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 5 - 2
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 5 - 2
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 5 - 2
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 3 - 2
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 5 - 2
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 5 - 2
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 5 - 2
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 3 - 2
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 5 - 2
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 3 - 2
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 3 - 2
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 3 - 2
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 3 - 2
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 5 - 2
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4 = 6 - 2
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4 = 6 - 2
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 4 = 6 - 2
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2 = 4 - 2
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 4 = 6 - 2
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 4 = 6 - 2
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 4 = 6 - 2
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2 = 4 - 2
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 4 = 6 - 2
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2 = 4 - 2
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2 = 4 - 2
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2 = 4 - 2
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 4 = 6 - 2
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4 = 6 - 2
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 4 = 6 - 2
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 4 = 6 - 2
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2 = 4 - 2
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 4 = 6 - 2
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2 = 4 - 2
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2 = 4 - 2
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 4 = 6 - 2
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 4 = 6 - 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2 = 4 - 2
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 2 = 4 - 2
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 2 = 4 - 2
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2 = 4 - 2
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 4 = 6 - 2
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 8 - 2
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 8 - 2
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 8 - 2
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 8 - 2
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 8 - 2
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 8 - 2
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 8 - 2
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 6 - 2
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 6 - 2
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 6 - 2
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [.,[.,[.,[[[[.,.],.],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 8 - 2
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 8 - 2
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 8 - 2
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 8 - 2
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [.,[.,[[.,[[[.,.],.],.]],.]]]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 8 - 2
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 8 - 2
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [.,[.,[[[.,[[.,.],.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 8 - 2
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 6 - 2
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 6 - 2
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [.,[.,[[[[.,[.,.]],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 8 - 2
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 6 - 2
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 6 - 2
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 6 - 2
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [.,[.,[[.,.],[[[.,.],.],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 6 - 2
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 6 - 2
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [.,[.,[[[.,.],[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 6 - 2
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4 - 2
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [.,[.,[[[[.,.],[.,.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 6 - 2
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [.,[.,[[[.,.],.],[[.,.],.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 6 - 2
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [.,[.,[[[[.,.],.],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [.,[.,[[[[.,.],.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6 - 2
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [.,[.,[[[[[.,.],.],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 8 - 2
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 8 - 2
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 8 - 2
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 8 - 2
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 6 - 2
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 8 - 2
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> ? = 8 - 2
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 8 - 2
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ? = 6 - 2
Description
The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. In other words, this is the number of valleys and peaks whose first step is in odd position, the initial position equal to 1. The generating function is given in [1].
Mp00018: Binary trees left border symmetryBinary trees
Mp00013: Binary trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 50%
Values
[.,.]
=> [.,.]
=> ([],1)
=> ? = 2 - 1
[.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 3 - 1
[[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 1
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 - 1
[[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 1
[[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[[.,.],[.,[.,.]]],.]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[[.,.],[[.,.],.]],.]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[[.,[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 1
[[[[.,.],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[[[.,[.,[.,.]]],.],.]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[[[.,[[.,.],.]],.],.]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[[[[.,.],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[[[.,[.,.]],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[[[[.,.],.],.],.],.]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 5 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 5 - 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[.,.],[.,[[.,.],.]]]]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 5 - 1
[.,[[.,.],[[[.,.],.],.]]]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[.,[[.,[.,.]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[[.,.],.],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 5 - 1
[.,[[.,[[.,.],.]],[.,.]]]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 5 - 1
[.,[[[.,.],[.,.]],[.,.]]]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[.,[[[.,[.,.]],.],[.,.]]]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[.,[[[[.,.],.],.],[.,.]]]
=> [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[.,[[[[[.,.],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[[.,.],[.,[.,[.,[.,.]]]]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[[.,.],[.,[.,[[.,.],.]]]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[[.,.],[.,[[.,.],[.,.]]]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[[.,.],[.,[[[.,.],.],.]]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[[.,.],[[.,.],[.,[.,.]]]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[[.,.],[[.,.],[[.,.],.]]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Mp00018: Binary trees left border symmetryBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 50%
Values
[.,.]
=> [.,.]
=> ([],1)
=> ? = 2 - 2
[.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 3 - 2
[[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 2
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 - 2
[[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 2
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 2
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 2
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 2
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 2
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 2
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 2
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 2
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 2
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 2
[[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[[.,.],[.,[.,.]]],.]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[[[.,.],[[.,.],.]],.]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[[[.,[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 2
[[[[.,.],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 2
[[[.,[.,[.,.]]],.],.]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[[[.,[[.,.],.]],.],.]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[[[[.,.],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[[[[.,[.,.]],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[[[[[.,.],.],.],.],.]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[.,[.,[.,[[.,.],.]]]]]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[.,[.,[[.,.],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[.,[.,[[.,[.,.]],.]]]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 5 - 2
[.,[.,[.,[[[.,.],.],.]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[.,[[.,.],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[.,[[.,.],[[.,.],.]]]]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[.,[[.,[.,.]],[.,.]]]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 2
[.,[.,[[[.,.],.],[.,.]]]]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[.,[[.,[.,[.,.]]],.]]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 2
[.,[.,[[.,[[.,.],.]],.]]]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 2
[.,[.,[[[.,.],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 5 - 2
[.,[.,[[[.,[.,.]],.],.]]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 2
[.,[.,[[[[.,.],.],.],.]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[.,.],[.,[.,[.,.]]]]]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[.,.],[.,[[.,.],.]]]]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[.,.],[[.,.],[.,.]]]]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[.,.],[[.,[.,.]],.]]]
=> [.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 5 - 2
[.,[[.,.],[[[.,.],.],.]]]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[.,[.,.]],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 2
[.,[[.,[.,.]],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 2
[.,[[[.,.],.],[.,[.,.]]]]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[[.,.],.],[[.,.],.]]]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[.,[.,[.,.]]],[.,.]]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 5 - 2
[.,[[.,[[.,.],.]],[.,.]]]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 5 - 2
[.,[[[.,.],[.,.]],[.,.]]]
=> [.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 2
[.,[[[.,[.,.]],.],[.,.]]]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 2
[.,[[[[.,.],.],.],[.,.]]]
=> [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[.,[[.,[.,[.,[.,.]]]],.]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 2
[.,[[[[[.,.],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[[.,.],[.,[.,[.,[.,.]]]]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[[.,.],[.,[.,[[.,.],.]]]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[[.,.],[.,[[.,.],[.,.]]]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[[.,.],[.,[[[.,.],.],.]]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[[.,.],[[.,.],[.,[.,.]]]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[[.,.],[[.,.],[[.,.],.]]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.