Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000531
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St000531: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,3]
=> 6
Description
The leading coefficient of the rook polynomial of an integer partition. Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
Matching statistic: St000757
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St000757: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1] => 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => 6
Description
The length of the longest weakly inreasing subsequence of parts of an integer composition.
Matching statistic: St000765
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St000765: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1] => 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => 6
Description
The number of weak records in an integer composition. A weak record is an element $a_i$ such that $a_i \geq a_j$ for all $j < i$.
Matching statistic: St000904
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St000904: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1] => 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => 6
Description
The maximal number of repetitions of an integer composition.
Matching statistic: St001235
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St001235: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1] => 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => 6
Description
The global dimension of the corresponding Comp-Nakayama algebra. We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Matching statistic: St001236
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St001236: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1] => 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => 6
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Matching statistic: St001659
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St001659: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,3]
=> 6
Description
The number of ways to place as many non-attacking rooks as possible on a Ferrers board.
Matching statistic: St001707
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00157: Graphs connected complementGraphs
St001707: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. Such a partition always exists because of a construction due to Dudek and Pralat [1] and independently Pokrovskiy [2].
Matching statistic: St001777
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St001777: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1] => 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => 5 = 6 - 1
Description
The number of weak descents in an integer composition. A weak descent of an integer composition $\alpha=(a_1, \dots, a_n)$ is an index $1\leq i < n$ such that $a_i \geq a_{i+1}$.
Matching statistic: St000777
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St000777: Graphs ⟶ ℤResult quality: 50% values known / values provided: 60%distinct values known / distinct values provided: 50%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 6
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
The following 1 statistic also match your data. Click on any of them to see the details.
St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.