searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001707
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
Description
The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them.
Such a partition always exists because of a construction due to Dudek and Pralat [1] and independently Pokrovskiy [2].
Matching statistic: St000531
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000531: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000531: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 4
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [5,1]
=> 4
Description
The leading coefficient of the rook polynomial of an integer partition.
Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
Matching statistic: St001659
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St001659: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St001659: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 3
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 4
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [5,1]
=> 4
Description
The number of ways to place as many non-attacking rooks as possible on a Ferrers board.
Matching statistic: St001384
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001384: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001384: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [5,1]
=> 3 = 4 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,1,1,1]
=> 3 = 4 - 1
Description
The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains.
Matching statistic: St000936
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1]
=> ? = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 3 = 4 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 3 = 4 - 1
Description
The number of even values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugace class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $4$.
It is shown in [1] that the sum of the values of the statistic over all partitions of a given size is even.
Matching statistic: St001880
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 3 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5 = 4 + 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!