searching the database
Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001744
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001744: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001744: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => 0
[3] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 0
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,1,2,6] => 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4,6] => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [3,1,2,6,4,5] => 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,6,2,3] => 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,5] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,3,5,6] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,5,6,3,4] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,5,3,4,6] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => 1
Description
The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation.
Let $\nu$ be a (partial) permutation of $[k]$ with $m$ letters together with dashes between some of its letters. An occurrence of $\nu$ in a permutation $\tau$ is a subsequence $\tau_{a_1},\dots,\tau_{a_m}$
such that $a_i + 1 = a_{i+1}$ whenever there is a dash between the $i$-th and the $(i+1)$-st letter of $\nu$, which is order isomorphic to $\nu$.
Thus, $\nu$ is a vincular pattern, except that it is not required to be a permutation.
An arrow pattern of size $k$ consists of such a generalized vincular pattern $\nu$ and arrows $b_1\to c_1, b_2\to c_2,\dots$, such that precisely the numbers $1,\dots,k$ appear in the vincular pattern and the arrows.
Let $\Phi$ be the map [[Mp00087]]. Let $\tau$ be a permutation and $\sigma = \Phi(\tau)$. Then a subsequence $w = (x_{a_1},\dots,x_{a_m})$ of $\tau$ is an occurrence of the arrow pattern if $w$ is an occurrence of $\nu$, for each arrow $b\to c$ we have $\sigma(x_b) = x_c$ and $x_1 < x_2 < \dots < x_k$.
Matching statistic: St000256
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000256: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000256: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => ([],1)
=> []
=> 0
[1,1] => [1,1] => ([(0,1)],2)
=> [1]
=> 0
[2] => [2] => ([],2)
=> []
=> 0
[1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
[1,2] => [1,2] => ([(1,2)],3)
=> [1]
=> 0
[2,1] => [2,1] => ([(0,2),(1,2)],3)
=> [1,1]
=> 0
[3] => [3] => ([],3)
=> []
=> 0
[1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
[1,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1
[1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 1
[1,3] => [1,3] => ([(2,3)],4)
=> [1]
=> 0
[2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
[2,2] => [2,2] => ([(1,3),(2,3)],4)
=> [1,1]
=> 0
[3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 0
[4] => [4] => ([],4)
=> []
=> 0
[1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 1
[1,1,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
[1,1,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> 1
[1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1
[1,2,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 1
[1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 1
[1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
[1,4] => [1,4] => ([(3,4)],5)
=> [1]
=> 0
[2,1,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 1
[2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
[2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1
[2,3] => [2,3] => ([(2,4),(3,4)],5)
=> [1,1]
=> 0
[3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1
[3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 0
[4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 0
[5] => [5] => ([],5)
=> []
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> ? = 1
[1,1,1,1,2] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 1
[1,1,1,2,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> ? = 1
[1,1,1,3] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
[1,1,2,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> ? = 1
[1,1,2,2] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> 1
[1,1,3,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> ? = 2
[1,1,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 1
[1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> ? = 1
[1,2,1,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1
[1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> ? = 1
[1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> 1
[1,3,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 1
[1,3,2] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 1
[1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1
[1,5] => [1,5] => ([(4,5)],6)
=> [1]
=> 0
[2,1,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> ? = 1
[2,1,1,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> 1
[2,1,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1
[2,1,3] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> 1
[2,2,1,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> 1
[2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 1
[2,4] => [2,4] => ([(3,5),(4,5)],6)
=> [1,1]
=> 0
[3,1,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6,1,1]
=> 1
[3,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 1
[1,2,1,1,1,1] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [17]
=> ? = 1
[1,2,1,1,2] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 1
[1,2,1,2,1] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [15]
=> ? = 1
[1,2,2,1,1] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [16]
=> ? = 1
[1,2,3,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [13]
=> ? = 2
[1,3,1,1,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 1
[1,3,2,1] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [14]
=> ? = 1
[1,4,1,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12]
=> ? = 1
[1,5,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [11]
=> ? = 1
[3,1,1,1,1] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1,1]
=> ? = 1
[3,1,2,1] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [12,1]
=> ? = 1
[3,2,1,1] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [10,1]
=> ? = 1
Description
The number of parts from which one can substract 2 and still get an integer partition.
Matching statistic: St001221
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St001221: Dyck paths ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St001221: Dyck paths ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,2] => [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[2,1] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,3] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,2,1,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[2,1,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[2,2,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,2] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,2,1] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,1,3] => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,2,1,1] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,3,1] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,4] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,2,1,1,1] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[1,2,1,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1
[1,2,2,1] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1
[1,2,3] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,3,1,1] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[1,3,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,4,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,5] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[2,1,1,1,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[2,1,1,2] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 1
[2,1,2,1] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 1
[1,2,1,1,1,1] => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,2,1,1,2] => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,2,1,2,1] => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 1
[1,2,1,3] => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 1
[1,2,2,1,1] => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> ? = 1
[1,2,2,2] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 1
[1,2,3,1] => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ? = 2
[1,2,4] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,3,1,1,1] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1
[1,3,1,2] => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? = 1
[1,3,2,1] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 1
[1,3,3] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 1
[1,4,1,1] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 1
[1,4,2] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 1
[1,5,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 1
[1,6] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[3,1,1,1,1] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[3,1,1,2] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 1
[3,1,2,1] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 1
[3,1,3] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[3,2,1,1] => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[3,2,2] => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 1
[3,3,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> ? = 1
[3,4] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 0
[4,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 1
[4,1,2] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[4,2,1] => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> ? = 1
[4,3] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[5,1,1] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1
[5,2] => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[6,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[7] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
Description
The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module.
Matching statistic: St001871
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Values
[1] => ([],1)
=> ([(0,1)],2)
=> 0
[1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,5] => ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,6] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
Description
The number of triconnected components of a graph.
A connected graph is '''triconnected''' or '''3-vertex connected''' if it cannot be disconnected by removing two or fewer vertices. An arbitrary connected graph can be decomposed as a union of biconnected (2-vertex connected) graphs, known as '''blocks''', and each biconnected graph can be decomposed as a union of components with are either a cycle (type "S"), a cocyle (type "P"), or triconnected (type "R"). The decomposition of a biconnected graph into these components is known as the '''SPQR-tree''' of the graph.
Matching statistic: St001192
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001192: Dyck paths ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001192: Dyck paths ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 1 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 2 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 1 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> ? = 1 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> ? = 1 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> ? = 1 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 1 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 1 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 1 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 0 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> ? = 1 + 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> ? = 1 + 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 2 + 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 1 + 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 1 + 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
Description
The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$.
Matching statistic: St001503
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001503: Dyck paths ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001503: Dyck paths ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Values
[1] => [1,0]
=> [1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1] => [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[2] => [1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1 = 0 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1 = 0 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1 = 0 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 1 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 1 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 0 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> ? = 1 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> ? = 1 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 1 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 0 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 1 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 0 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 0 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 1 + 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0]
=> ? = 1 + 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> ? = 1 + 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
Description
The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra.
Matching statistic: St000782
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000782: Perfect matchings ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1,0]
=> [(1,2)]
=> ? = 0
[1,1] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? = 0
[2] => [1] => [1,0]
=> [(1,2)]
=> ? = 0
[1,1,1] => [3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 1
[1,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[2,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[3] => [1] => [1,0]
=> [(1,2)]
=> ? = 0
[1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> ? = 1
[1,1,2] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[2,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[2,2] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? = 0
[3,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[4] => [1] => [1,0]
=> [(1,2)]
=> ? = 0
[1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> ? = 1
[1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? = 1
[1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 1
[1,1,3] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 1
[1,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 1
[2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[2,3] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[3,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[3,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[4,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[5] => [1] => [1,0]
=> [(1,2)]
=> ? = 0
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> ? = 1
[1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> ? = 1
[1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> ? = 1
[1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> ? = 1
[1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> ? = 1
[1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 1
[1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> ? = 2
[1,1,4] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> ? = 1
[1,2,1,2] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 1
[1,2,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 1
[1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> ? = 1
[1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[2,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> ? = 1
[2,1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> ? = 1
[2,1,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 1
[2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,2,1,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> ? = 1
[2,2,2] => [3] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 1
[2,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[2,4] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[3,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 1
[3,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,3] => [2] => [1,1,0,0]
=> [(1,4),(2,3)]
=> ? = 0
[4,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[4,2] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[5,1] => [1,1] => [1,0,1,0]
=> [(1,2),(3,4)]
=> ? = 0
[6] => [1] => [1,0]
=> [(1,2)]
=> ? = 0
[1,2,1,1,1,1] => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> ? = 1
[1,2,1,1,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> ? = 1
[1,2,1,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> ? = 1
[1,2,1,3] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 1
[1,2,2,1,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> ? = 1
[1,2,2,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> ? = 1
[1,2,3,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> ? = 2
[1,2,4] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,3,3] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,4,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[1,5,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[3,2,2] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[3,3,1] => [2,1] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[4,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[4,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1
[5,1,1] => [1,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
Description
The indicator function of whether a given perfect matching is an L & P matching.
An L&P matching is built inductively as follows:
starting with either a single edge, or a hairpin $([1,3],[2,4])$, insert a noncrossing matching or inflate an edge by a ladder, that is, a number of nested edges.
The number of L&P matchings is (see [thm. 1, 2])
$$\frac{1}{2} \cdot 4^{n} + \frac{1}{n + 1}{2 \, n \choose n} - {2 \, n + 1 \choose n} + {2 \, n - 1 \choose n - 1}$$
Matching statistic: St001845
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001845: Lattices ⟶ ℤResult quality: 28% ●values known / values provided: 28%●distinct values known / distinct values provided: 67%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001845: Lattices ⟶ ℤResult quality: 28% ●values known / values provided: 28%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,1] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2] => [2] => ([],2)
=> ([],1)
=> 0
[1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1] => [1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 0
[3] => [3] => ([],3)
=> ([],1)
=> 0
[1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 1
[1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,1] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 0
[4] => [4] => ([],4)
=> ([],1)
=> 0
[1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 1
[1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 1
[1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 1
[1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 1
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 1
[1,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 1
[2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[4,1] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 0
[5] => [5] => ([],5)
=> ([],1)
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,82),(1,83),(1,84),(1,85),(2,18),(2,19),(2,25),(2,30),(2,31),(2,37),(2,78),(2,79),(2,81),(2,83),(3,16),(3,17),(3,24),(3,28),(3,29),(3,36),(3,76),(3,77),(3,81),(3,82),(4,21),(4,23),(4,27),(4,33),(4,35),(4,39),(4,77),(4,79),(4,80),(4,85),(5,20),(5,22),(5,26),(5,32),(5,34),(5,38),(5,76),(5,78),(5,80),(5,84),(6,22),(6,23),(6,24),(6,46),(6,47),(6,54),(6,83),(6,86),(6,87),(6,91),(7,20),(7,21),(7,25),(7,48),(7,49),(7,55),(7,82),(7,88),(7,89),(7,91),(8,17),(8,19),(8,26),(8,50),(8,52),(8,56),(8,85),(8,86),(8,88),(8,90),(9,16),(9,18),(9,27),(9,51),(9,53),(9,57),(9,84),(9,87),(9,89),(9,90),(10,28),(10,32),(10,43),(10,48),(10,51),(10,59),(10,79),(10,86),(10,92),(10,94),(11,29),(11,33),(11,42),(11,49),(11,50),(11,60),(11,78),(11,87),(11,92),(11,95),(12,30),(12,34),(12,41),(12,46),(12,53),(12,60),(12,77),(12,88),(12,93),(12,94),(13,31),(13,35),(13,40),(13,47),(13,52),(13,59),(13,76),(13,89),(13,93),(13,95),(14,38),(14,39),(14,45),(14,56),(14,57),(14,58),(14,81),(14,91),(14,94),(14,95),(15,36),(15,37),(15,44),(15,54),(15,55),(15,58),(15,80),(15,90),(15,92),(15,93),(16,61),(16,107),(16,112),(16,126),(16,134),(16,170),(17,62),(17,106),(17,113),(17,127),(17,134),(17,171),(18,63),(18,109),(18,112),(18,129),(18,135),(18,172),(19,64),(19,108),(19,113),(19,128),(19,135),(19,173),(20,65),(20,104),(20,110),(20,132),(20,136),(20,170),(21,66),(21,105),(21,110),(21,133),(21,137),(21,171),(22,67),(22,102),(22,111),(22,130),(22,136),(22,172),(23,68),(23,103),(23,111),(23,131),(23,137),(23,173),(24,69),(24,102),(24,103),(24,126),(24,127),(24,175),(25,70),(25,104),(25,105),(25,128),(25,129),(25,175),(26,71),(26,106),(26,108),(26,130),(26,132),(26,174),(27,72),(27,107),(27,109),(27,131),(27,133),(27,174),(28,61),(28,96),(28,114),(28,127),(28,138),(28,169),(29,62),(29,97),(29,115),(29,126),(29,138),(29,168),(30,63),(30,98),(30,117),(30,128),(30,139),(30,169),(31,64),(31,99),(31,116),(31,129),(31,139),(31,168),(32,65),(32,96),(32,118),(32,130),(32,140),(32,167),(33,66),(33,97),(33,119),(33,131),(33,141),(33,167),(34,67),(34,98),(34,120),(34,132),(34,140),(34,166),(35,68),(35,99),(35,121),(35,133),(35,141),(35,166),(36,69),(36,100),(36,122),(36,134),(36,138),(36,166),(37,70),(37,100),(37,123),(37,135),(37,139),(37,167),(38,71),(38,101),(38,124),(38,136),(38,140),(38,168),(39,72),(39,101),(39,125),(39,137),(39,141),(39,169),(40,73),(40,116),(40,121),(40,142),(40,144),(40,170),(41,74),(41,117),(41,120),(41,142),(41,145),(41,171),(42,74),(42,115),(42,119),(42,143),(42,144),(42,172),(43,73),(43,114),(43,118),(43,143),(43,145),(43,173),(44,75),(44,122),(44,123),(44,142),(44,143),(44,174),(45,75),(45,124),(45,125),(45,144),(45,145),(45,175),(46,67),(46,103),(46,117),(46,148),(46,152),(46,178),(47,68),(47,102),(47,116),(47,149),(47,152),(47,179),(48,65),(48,105),(48,114),(48,146),(48,153),(48,178),(49,66),(49,104),(49,115),(49,147),(49,153),(49,179),(50,62),(50,108),(50,119),(50,147),(50,154),(50,176),(51,61),(51,109),(51,118),(51,146),(51,155),(51,176),(52,64),(52,106),(52,121),(52,149),(52,154),(52,177),(53,63),(53,107),(53,120),(53,148),(53,155),(53,177),(54,69),(54,111),(54,123),(54,150),(54,152),(54,176),(55,70),(55,110),(55,122),(55,150),(55,153),(55,177),(56,71),(56,113),(56,125),(56,151),(56,154),(56,178),(57,72),(57,112),(57,124),(57,151),(57,155),(57,179),(58,75),(58,100),(58,101),(58,150),(58,151),(58,180),(59,73),(59,96),(59,99),(59,146),(59,149),(59,180),(60,74),(60,97),(60,98),(60,147),(60,148),(60,180),(61,181),(61,189),(61,190),(62,181),(62,188),(62,191),(63,182),(63,189),(63,192),(64,182),(64,188),(64,193),(65,183),(65,187),(65,190),(66,184),(66,187),(66,191),(67,183),(67,186),(67,192),(68,184),(68,186),(68,193),(69,181),(69,186),(69,194),(70,182),(70,187),(70,194),(71,183),(71,188),(71,195),(72,184),(72,189),(72,195),(73,185),(73,190),(73,193),(74,185),(74,191),(74,192),(75,185),(75,194),(75,195),(76,96),(76,102),(76,106),(76,166),(76,168),(76,170),(77,97),(77,103),(77,107),(77,166),(77,169),(77,171),(78,98),(78,104),(78,108),(78,167),(78,168),(78,172),(79,99),(79,105),(79,109),(79,167),(79,169),(79,173),(80,101),(80,110),(80,111),(80,166),(80,167),(80,174),(81,100),(81,112),(81,113),(81,168),(81,169),(81,175),(82,114),(82,115),(82,122),(82,170),(82,171),(82,175),(83,116),(83,117),(83,123),(83,172),(83,173),(83,175),(84,118),(84,120),(84,124),(84,170),(84,172),(84,174),(85,119),(85,121),(85,125),(85,171),(85,173),(85,174),(86,127),(86,130),(86,149),(86,173),(86,176),(86,178),(87,126),(87,131),(87,148),(87,172),(87,176),(87,179),(88,128),(88,132),(88,147),(88,171),(88,177),(88,178),(89,129),(89,133),(89,146),(89,170),(89,177),(89,179),(90,134),(90,135),(90,151),(90,174),(90,176),(90,177),(91,136),(91,137),(91,150),(91,175),(91,178),(91,179),(92,138),(92,143),(92,153),(92,167),(92,176),(92,180),(93,139),(93,142),(93,152),(93,166),(93,177),(93,180),(94,140),(94,145),(94,155),(94,169),(94,178),(94,180),(95,141),(95,144),(95,154),(95,168),(95,179),(95,180),(96,156),(96,190),(96,197),(97,157),(97,191),(97,197),(98,158),(98,192),(98,197),(99,159),(99,193),(99,197),(100,160),(100,194),(100,197),(101,161),(101,195),(101,197),(102,156),(102,186),(102,200),(103,157),(103,186),(103,201),(104,158),(104,187),(104,200),(105,159),(105,187),(105,201),(106,156),(106,188),(106,198),(107,157),(107,189),(107,198),(108,158),(108,188),(108,199),(109,159),(109,189),(109,199),(110,161),(110,187),(110,198),(111,161),(111,186),(111,199),(112,160),(112,189),(112,200),(113,160),(113,188),(113,201),(114,162),(114,190),(114,201),(115,162),(115,191),(115,200),(116,163),(116,193),(116,200),(117,163),(117,192),(117,201),(118,164),(118,190),(118,199),(119,165),(119,191),(119,199),(120,164),(120,192),(120,198),(121,165),(121,193),(121,198),(122,162),(122,194),(122,198),(123,163),(123,194),(123,199),(124,164),(124,195),(124,200),(125,165),(125,195),(125,201),(126,157),(126,181),(126,200),(127,156),(127,181),(127,201),(128,158),(128,182),(128,201),(129,159),(129,182),(129,200),(130,156),(130,183),(130,199),(131,157),(131,184),(131,199),(132,158),(132,183),(132,198),(133,159),(133,184),(133,198),(134,160),(134,181),(134,198),(135,160),(135,182),(135,199),(136,161),(136,183),(136,200),(137,161),(137,184),(137,201),(138,162),(138,181),(138,197),(139,163),(139,182),(139,197),(140,164),(140,183),(140,197),(141,165),(141,184),(141,197),(142,163),(142,185),(142,198),(143,162),(143,185),(143,199),(144,165),(144,185),(144,200),(145,164),(145,185),(145,201),(146,159),(146,190),(146,196),(147,158),(147,191),(147,196),(148,157),(148,192),(148,196),(149,156),(149,193),(149,196),(150,161),(150,194),(150,196),(151,160),(151,195),(151,196),(152,163),(152,186),(152,196),(153,162),(153,187),(153,196),(154,165),(154,188),(154,196),(155,164),(155,189),(155,196),(156,202),(157,202),(158,202),(159,202),(160,202),(161,202),(162,202),(163,202),(164,202),(165,202),(166,186),(166,197),(166,198),(167,187),(167,197),(167,199),(168,188),(168,197),(168,200),(169,189),(169,197),(169,201),(170,190),(170,198),(170,200),(171,191),(171,198),(171,201),(172,192),(172,199),(172,200),(173,193),(173,199),(173,201),(174,195),(174,198),(174,199),(175,194),(175,200),(175,201),(176,181),(176,196),(176,199),(177,182),(177,196),(177,198),(178,183),(178,196),(178,201),(179,184),(179,196),(179,200),(180,185),(180,196),(180,197),(181,202),(182,202),(183,202),(184,202),(185,202),(186,202),(187,202),(188,202),(189,202),(190,202),(191,202),(192,202),(193,202),(194,202),(195,202),(196,202),(197,202),(198,202),(199,202),(200,202),(201,202)],203)
=> ? = 1
[1,1,1,1,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 1
[1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,25),(1,30),(1,31),(1,36),(1,37),(1,40),(1,43),(1,46),(1,64),(1,65),(2,24),(2,27),(2,29),(2,33),(2,35),(2,39),(2,42),(2,45),(2,63),(2,65),(3,23),(3,26),(3,28),(3,32),(3,34),(3,38),(3,41),(3,44),(3,63),(3,64),(4,20),(4,21),(4,22),(4,23),(4,24),(4,25),(4,90),(4,91),(4,92),(5,16),(5,28),(5,29),(5,43),(5,47),(5,48),(5,84),(5,85),(5,90),(6,14),(6,26),(6,30),(6,42),(6,49),(6,51),(6,84),(6,86),(6,91),(7,15),(7,27),(7,31),(7,41),(7,50),(7,52),(7,85),(7,86),(7,92),(8,19),(8,34),(8,35),(8,46),(8,49),(8,50),(8,87),(8,88),(8,90),(9,17),(9,32),(9,36),(9,45),(9,47),(9,52),(9,87),(9,89),(9,91),(10,18),(10,33),(10,37),(10,44),(10,48),(10,51),(10,88),(10,89),(10,92),(11,15),(11,18),(11,20),(11,38),(11,62),(11,65),(11,84),(11,87),(12,14),(12,17),(12,21),(12,39),(12,62),(12,64),(12,85),(12,88),(13,16),(13,19),(13,22),(13,40),(13,62),(13,63),(13,86),(13,89),(14,67),(14,94),(14,97),(14,112),(14,146),(15,66),(15,93),(15,98),(15,113),(15,146),(16,68),(16,95),(16,96),(16,114),(16,146),(17,70),(17,94),(17,100),(17,116),(17,145),(18,69),(18,93),(18,101),(18,115),(18,145),(19,71),(19,95),(19,99),(19,117),(19,145),(20,59),(20,93),(20,102),(20,111),(20,148),(21,60),(21,94),(21,102),(21,110),(21,149),(22,61),(22,95),(22,102),(22,109),(22,150),(23,59),(23,103),(23,105),(23,109),(23,110),(23,124),(24,60),(24,104),(24,106),(24,109),(24,111),(24,125),(25,61),(25,107),(25,108),(25,110),(25,111),(25,126),(26,53),(26,80),(26,97),(26,103),(26,118),(26,139),(27,54),(27,81),(27,98),(27,104),(27,119),(27,139),(28,55),(28,78),(28,96),(28,105),(28,118),(28,140),(29,56),(29,79),(29,96),(29,106),(29,119),(29,141),(30,57),(30,83),(30,97),(30,107),(30,120),(30,141),(31,58),(31,82),(31,98),(31,108),(31,120),(31,140),(32,55),(32,74),(32,100),(32,103),(32,121),(32,142),(33,56),(33,75),(33,101),(33,104),(33,122),(33,142),(34,53),(34,72),(34,99),(34,105),(34,121),(34,143),(35,54),(35,73),(35,99),(35,106),(35,122),(35,144),(36,58),(36,77),(36,100),(36,107),(36,123),(36,144),(37,57),(37,76),(37,101),(37,108),(37,123),(37,143),(38,59),(38,66),(38,69),(38,118),(38,121),(38,147),(39,60),(39,67),(39,70),(39,119),(39,122),(39,147),(40,61),(40,68),(40,71),(40,120),(40,123),(40,147),(41,66),(41,72),(41,74),(41,124),(41,139),(41,140),(42,67),(42,73),(42,75),(42,125),(42,139),(42,141),(43,68),(43,76),(43,77),(43,126),(43,140),(43,141),(44,69),(44,78),(44,80),(44,124),(44,142),(44,143),(45,70),(45,79),(45,81),(45,125),(45,142),(45,144),(46,71),(46,82),(46,83),(46,126),(46,143),(46,144),(47,55),(47,77),(47,79),(47,114),(47,116),(47,148),(48,56),(48,76),(48,78),(48,114),(48,115),(48,149),(49,53),(49,73),(49,83),(49,112),(49,117),(49,148),(50,54),(50,72),(50,82),(50,113),(50,117),(50,149),(51,57),(51,75),(51,80),(51,112),(51,115),(51,150),(52,58),(52,74),(52,81),(52,113),(52,116),(52,150),(53,152),(53,154),(53,158),(54,153),(54,154),(54,159),(55,151),(55,155),(55,158),(56,151),(56,156),(56,159),(57,152),(57,156),(57,160),(58,153),(58,155),(58,160),(59,127),(59,157),(59,158),(60,128),(60,157),(60,159),(61,129),(61,157),(61,160),(62,102),(62,145),(62,146),(62,147),(63,96),(63,99),(63,109),(63,139),(63,142),(63,147),(64,97),(64,100),(64,110),(64,140),(64,143),(64,147),(65,98),(65,101),(65,111),(65,141),(65,144),(65,147),(66,127),(66,130),(66,164),(67,128),(67,131),(67,164),(68,129),(68,132),(68,164),(69,127),(69,133),(69,165),(70,128),(70,134),(70,165),(71,129),(71,135),(71,165),(72,130),(72,154),(72,162),(73,131),(73,154),(73,163),(74,130),(74,155),(74,161),(75,131),(75,156),(75,161),(76,132),(76,156),(76,162),(77,132),(77,155),(77,163),(78,133),(78,151),(78,162),(79,134),(79,151),(79,163),(80,133),(80,152),(80,161),(81,134),(81,153),(81,161),(82,135),(82,153),(82,162),(83,135),(83,152),(83,163),(84,115),(84,118),(84,141),(84,146),(84,148),(85,116),(85,119),(85,140),(85,146),(85,149),(86,117),(86,120),(86,139),(86,146),(86,150),(87,113),(87,121),(87,144),(87,145),(87,148),(88,112),(88,122),(88,143),(88,145),(88,149),(89,114),(89,123),(89,142),(89,145),(89,150),(90,95),(90,105),(90,106),(90,126),(90,148),(90,149),(91,94),(91,103),(91,107),(91,125),(91,148),(91,150),(92,93),(92,104),(92,108),(92,124),(92,149),(92,150),(93,127),(93,138),(93,166),(94,128),(94,137),(94,166),(95,129),(95,136),(95,166),(96,136),(96,151),(96,164),(97,137),(97,152),(97,164),(98,138),(98,153),(98,164),(99,136),(99,154),(99,165),(100,137),(100,155),(100,165),(101,138),(101,156),(101,165),(102,157),(102,166),(103,137),(103,158),(103,161),(104,138),(104,159),(104,161),(105,136),(105,158),(105,162),(106,136),(106,159),(106,163),(107,137),(107,160),(107,163),(108,138),(108,160),(108,162),(109,136),(109,157),(109,161),(110,137),(110,157),(110,162),(111,138),(111,157),(111,163),(112,131),(112,152),(112,166),(113,130),(113,153),(113,166),(114,132),(114,151),(114,166),(115,133),(115,156),(115,166),(116,134),(116,155),(116,166),(117,135),(117,154),(117,166),(118,133),(118,158),(118,164),(119,134),(119,159),(119,164),(120,135),(120,160),(120,164),(121,130),(121,158),(121,165),(122,131),(122,159),(122,165),(123,132),(123,160),(123,165),(124,127),(124,161),(124,162),(125,128),(125,161),(125,163),(126,129),(126,162),(126,163),(127,167),(128,167),(129,167),(130,167),(131,167),(132,167),(133,167),(134,167),(135,167),(136,167),(137,167),(138,167),(139,154),(139,161),(139,164),(140,155),(140,162),(140,164),(141,156),(141,163),(141,164),(142,151),(142,161),(142,165),(143,152),(143,162),(143,165),(144,153),(144,163),(144,165),(145,165),(145,166),(146,164),(146,166),(147,157),(147,164),(147,165),(148,158),(148,163),(148,166),(149,159),(149,162),(149,166),(150,160),(150,161),(150,166),(151,167),(152,167),(153,167),(154,167),(155,167),(156,167),(157,167),(158,167),(159,167),(160,167),(161,167),(162,167),(163,167),(164,167),(165,167),(166,167)],168)
=> ? = 1
[1,1,1,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,15),(1,26),(1,27),(1,32),(1,33),(1,41),(1,42),(1,91),(1,94),(2,14),(2,23),(2,25),(2,29),(2,31),(2,40),(2,42),(2,90),(2,93),(3,13),(3,22),(3,24),(3,28),(3,30),(3,40),(3,41),(3,89),(3,92),(4,18),(4,24),(4,25),(4,34),(4,35),(4,43),(4,44),(4,86),(4,94),(5,17),(5,22),(5,26),(5,36),(5,38),(5,43),(5,45),(5,87),(5,93),(6,16),(6,23),(6,27),(6,37),(6,39),(6,44),(6,45),(6,88),(6,92),(7,21),(7,30),(7,31),(7,36),(7,37),(7,46),(7,47),(7,86),(7,91),(8,20),(8,28),(8,32),(8,34),(8,39),(8,46),(8,48),(8,87),(8,90),(9,19),(9,29),(9,33),(9,35),(9,38),(9,47),(9,48),(9,88),(9,89),(10,19),(10,20),(10,21),(10,49),(10,92),(10,93),(10,94),(11,16),(11,17),(11,18),(11,49),(11,89),(11,90),(11,91),(12,13),(12,14),(12,15),(12,49),(12,86),(12,87),(12,88),(13,53),(13,54),(13,98),(13,100),(13,134),(14,53),(14,55),(14,99),(14,101),(14,135),(15,54),(15,55),(15,102),(15,103),(15,136),(16,56),(16,58),(16,107),(16,108),(16,134),(17,57),(17,58),(17,106),(17,109),(17,135),(18,56),(18,57),(18,104),(18,105),(18,136),(19,59),(19,61),(19,113),(19,114),(19,134),(20,60),(20,61),(20,112),(20,115),(20,135),(21,59),(21,60),(21,110),(21,111),(21,136),(22,63),(22,65),(22,80),(22,98),(22,106),(22,131),(23,64),(23,66),(23,81),(23,99),(23,107),(23,131),(24,62),(24,65),(24,82),(24,100),(24,104),(24,132),(25,62),(25,66),(25,83),(25,101),(25,105),(25,133),(26,63),(26,67),(26,84),(26,102),(26,109),(26,133),(27,64),(27,67),(27,85),(27,103),(27,108),(27,132),(28,69),(28,74),(28,82),(28,98),(28,112),(28,128),(29,70),(29,75),(29,83),(29,99),(29,113),(29,128),(30,68),(30,74),(30,80),(30,100),(30,110),(30,129),(31,68),(31,75),(31,81),(31,101),(31,111),(31,130),(32,69),(32,76),(32,85),(32,102),(32,115),(32,130),(33,70),(33,76),(33,84),(33,103),(33,114),(33,129),(34,72),(34,79),(34,82),(34,105),(34,115),(34,126),(35,71),(35,79),(35,83),(35,104),(35,114),(35,125),(36,73),(36,77),(36,80),(36,109),(36,111),(36,126),(37,73),(37,78),(37,81),(37,108),(37,110),(37,125),(38,71),(38,77),(38,84),(38,106),(38,113),(38,127),(39,72),(39,78),(39,85),(39,107),(39,112),(39,127),(40,50),(40,53),(40,62),(40,68),(40,128),(40,131),(41,50),(41,54),(41,63),(41,69),(41,129),(41,132),(42,50),(42,55),(42,64),(42,70),(42,130),(42,133),(43,51),(43,57),(43,65),(43,71),(43,126),(43,133),(44,51),(44,56),(44,66),(44,72),(44,125),(44,132),(45,51),(45,58),(45,67),(45,73),(45,127),(45,131),(46,52),(46,60),(46,74),(46,78),(46,126),(46,130),(47,52),(47,59),(47,75),(47,77),(47,125),(47,129),(48,52),(48,61),(48,76),(48,79),(48,127),(48,128),(49,134),(49,135),(49,136),(50,95),(50,147),(50,148),(51,96),(51,146),(51,148),(52,97),(52,146),(52,147),(53,95),(53,118),(53,151),(54,95),(54,116),(54,149),(55,95),(55,117),(55,150),(56,96),(56,120),(56,149),(57,96),(57,119),(57,150),(58,96),(58,121),(58,151),(59,97),(59,123),(59,149),(60,97),(60,122),(60,150),(61,97),(61,124),(61,151),(62,118),(62,142),(62,148),(63,116),(63,140),(63,148),(64,117),(64,141),(64,148),(65,119),(65,137),(65,148),(66,120),(66,138),(66,148),(67,121),(67,139),(67,148),(68,118),(68,143),(68,147),(69,116),(69,144),(69,147),(70,117),(70,145),(70,147),(71,119),(71,145),(71,146),(72,120),(72,144),(72,146),(73,121),(73,143),(73,146),(74,122),(74,137),(74,147),(75,123),(75,138),(75,147),(76,124),(76,139),(76,147),(77,123),(77,140),(77,146),(78,122),(78,141),(78,146),(79,124),(79,142),(79,146),(80,137),(80,140),(80,143),(81,138),(81,141),(81,143),(82,137),(82,142),(82,144),(83,138),(83,142),(83,145),(84,139),(84,140),(84,145),(85,139),(85,141),(85,144),(86,100),(86,101),(86,125),(86,126),(86,136),(87,98),(87,102),(87,126),(87,127),(87,135),(88,99),(88,103),(88,125),(88,127),(88,134),(89,104),(89,106),(89,128),(89,129),(89,134),(90,105),(90,107),(90,128),(90,130),(90,135),(91,108),(91,109),(91,129),(91,130),(91,136),(92,110),(92,112),(92,131),(92,132),(92,134),(93,111),(93,113),(93,131),(93,133),(93,135),(94,114),(94,115),(94,132),(94,133),(94,136),(95,152),(96,152),(97,152),(98,116),(98,137),(98,151),(99,117),(99,138),(99,151),(100,118),(100,137),(100,149),(101,118),(101,138),(101,150),(102,116),(102,139),(102,150),(103,117),(103,139),(103,149),(104,119),(104,142),(104,149),(105,120),(105,142),(105,150),(106,119),(106,140),(106,151),(107,120),(107,141),(107,151),(108,121),(108,141),(108,149),(109,121),(109,140),(109,150),(110,122),(110,143),(110,149),(111,123),(111,143),(111,150),(112,122),(112,144),(112,151),(113,123),(113,145),(113,151),(114,124),(114,145),(114,149),(115,124),(115,144),(115,150),(116,152),(117,152),(118,152),(119,152),(120,152),(121,152),(122,152),(123,152),(124,152),(125,138),(125,146),(125,149),(126,137),(126,146),(126,150),(127,139),(127,146),(127,151),(128,142),(128,147),(128,151),(129,140),(129,147),(129,149),(130,141),(130,147),(130,150),(131,143),(131,148),(131,151),(132,144),(132,148),(132,149),(133,145),(133,148),(133,150),(134,149),(134,151),(135,150),(135,151),(136,149),(136,150),(137,152),(138,152),(139,152),(140,152),(141,152),(142,152),(143,152),(144,152),(145,152),(146,152),(147,152),(148,152),(149,152),(150,152),(151,152)],153)
=> ? = 1
[1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ? = 1
[1,1,2,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ? = 1
[1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ? = 2
[1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,15),(1,20),(1,21),(1,23),(1,29),(1,69),(2,10),(2,14),(2,18),(2,19),(2,22),(2,28),(2,69),(3,13),(3,17),(3,19),(3,21),(3,25),(3,31),(3,68),(4,12),(4,16),(4,18),(4,20),(4,24),(4,30),(4,68),(5,14),(5,15),(5,16),(5,17),(5,27),(5,33),(5,67),(6,10),(6,11),(6,12),(6,13),(6,26),(6,32),(6,67),(7,28),(7,29),(7,30),(7,31),(7,32),(7,33),(7,66),(8,22),(8,23),(8,24),(8,25),(8,26),(8,27),(8,66),(9,66),(9,67),(9,68),(9,69),(10,34),(10,46),(10,58),(10,59),(10,87),(11,35),(11,47),(11,60),(11,61),(11,87),(12,36),(12,48),(12,58),(12,60),(12,88),(13,37),(13,49),(13,59),(13,61),(13,88),(14,38),(14,50),(14,62),(14,63),(14,87),(15,39),(15,51),(15,64),(15,65),(15,87),(16,40),(16,52),(16,62),(16,64),(16,88),(17,41),(17,53),(17,63),(17,65),(17,88),(18,42),(18,54),(18,58),(18,62),(18,86),(19,43),(19,55),(19,59),(19,63),(19,86),(20,44),(20,56),(20,60),(20,64),(20,86),(21,45),(21,57),(21,61),(21,65),(21,86),(22,34),(22,38),(22,42),(22,43),(22,89),(23,35),(23,39),(23,44),(23,45),(23,89),(24,36),(24,40),(24,42),(24,44),(24,90),(25,37),(25,41),(25,43),(25,45),(25,90),(26,34),(26,35),(26,36),(26,37),(26,91),(27,38),(27,39),(27,40),(27,41),(27,91),(28,46),(28,50),(28,54),(28,55),(28,89),(29,47),(29,51),(29,56),(29,57),(29,89),(30,48),(30,52),(30,54),(30,56),(30,90),(31,49),(31,53),(31,55),(31,57),(31,90),(32,46),(32,47),(32,48),(32,49),(32,91),(33,50),(33,51),(33,52),(33,53),(33,91),(34,70),(34,71),(34,93),(35,72),(35,73),(35,93),(36,70),(36,72),(36,94),(37,71),(37,73),(37,94),(38,74),(38,75),(38,93),(39,76),(39,77),(39,93),(40,74),(40,76),(40,94),(41,75),(41,77),(41,94),(42,70),(42,74),(42,95),(43,71),(43,75),(43,95),(44,72),(44,76),(44,95),(45,73),(45,77),(45,95),(46,78),(46,79),(46,93),(47,80),(47,81),(47,93),(48,78),(48,80),(48,94),(49,79),(49,81),(49,94),(50,82),(50,83),(50,93),(51,84),(51,85),(51,93),(52,82),(52,84),(52,94),(53,83),(53,85),(53,94),(54,78),(54,82),(54,95),(55,79),(55,83),(55,95),(56,80),(56,84),(56,95),(57,81),(57,85),(57,95),(58,70),(58,78),(58,92),(59,71),(59,79),(59,92),(60,72),(60,80),(60,92),(61,73),(61,81),(61,92),(62,74),(62,82),(62,92),(63,75),(63,83),(63,92),(64,76),(64,84),(64,92),(65,77),(65,85),(65,92),(66,89),(66,90),(66,91),(67,87),(67,88),(67,91),(68,86),(68,88),(68,90),(69,86),(69,87),(69,89),(70,96),(71,96),(72,96),(73,96),(74,96),(75,96),(76,96),(77,96),(78,96),(79,96),(80,96),(81,96),(82,96),(83,96),(84,96),(85,96),(86,92),(86,95),(87,92),(87,93),(88,92),(88,94),(89,93),(89,95),(90,94),(90,95),(91,93),(91,94),(92,96),(93,96),(94,96),(95,96)],97)
=> ? = 1
[1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ? = 1
[1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ? = 1
[1,2,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ? = 1
[1,2,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(2,11),(2,15),(2,20),(2,21),(2,23),(2,50),(3,10),(3,14),(3,18),(3,19),(3,22),(3,50),(4,13),(4,17),(4,19),(4,21),(4,25),(4,49),(5,12),(5,16),(5,18),(5,20),(5,24),(5,49),(6,14),(6,15),(6,16),(6,17),(6,27),(6,48),(7,10),(7,11),(7,12),(7,13),(7,26),(7,48),(8,9),(8,48),(8,49),(8,50),(9,59),(9,60),(9,61),(10,28),(10,40),(10,41),(10,63),(11,29),(11,42),(11,43),(11,63),(12,30),(12,40),(12,42),(12,64),(13,31),(13,41),(13,43),(13,64),(14,32),(14,44),(14,45),(14,63),(15,33),(15,46),(15,47),(15,63),(16,34),(16,44),(16,46),(16,64),(17,35),(17,45),(17,47),(17,64),(18,36),(18,40),(18,44),(18,62),(19,37),(19,41),(19,45),(19,62),(20,38),(20,42),(20,46),(20,62),(21,39),(21,43),(21,47),(21,62),(22,28),(22,32),(22,36),(22,37),(22,59),(23,29),(23,33),(23,38),(23,39),(23,59),(24,30),(24,34),(24,36),(24,38),(24,60),(25,31),(25,35),(25,37),(25,39),(25,60),(26,28),(26,29),(26,30),(26,31),(26,61),(27,32),(27,33),(27,34),(27,35),(27,61),(28,51),(28,52),(28,66),(29,53),(29,54),(29,66),(30,51),(30,53),(30,67),(31,52),(31,54),(31,67),(32,55),(32,56),(32,66),(33,57),(33,58),(33,66),(34,55),(34,57),(34,67),(35,56),(35,58),(35,67),(36,51),(36,55),(36,65),(37,52),(37,56),(37,65),(38,53),(38,57),(38,65),(39,54),(39,58),(39,65),(40,51),(40,68),(41,52),(41,68),(42,53),(42,68),(43,54),(43,68),(44,55),(44,68),(45,56),(45,68),(46,57),(46,68),(47,58),(47,68),(48,61),(48,63),(48,64),(49,60),(49,62),(49,64),(50,59),(50,62),(50,63),(51,69),(52,69),(53,69),(54,69),(55,69),(56,69),(57,69),(58,69),(59,65),(59,66),(60,65),(60,67),(61,66),(61,67),(62,65),(62,68),(63,66),(63,68),(64,67),(64,68),(65,69),(66,69),(67,69),(68,69)],70)
=> ? = 1
[1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ? = 1
[1,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 1
[1,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 1
[1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 0
[2,1,1,1,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[2,1,1,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 1
[2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 1
[2,1,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 1
[2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 1
[2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 1
[2,3,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
[3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[3,1,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 1
[3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[5,1] => [1,5] => ([(4,5)],6)
=> ([(0,1)],2)
=> 0
[6] => [6] => ([],6)
=> ([],1)
=> 0
[1,2,1,1,1,1] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(0,16),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(1,66),(1,143),(1,144),(1,145),(1,146),(2,19),(2,20),(2,26),(2,31),(2,32),(2,38),(2,63),(2,139),(2,140),(2,142),(2,144),(3,17),(3,18),(3,25),(3,29),(3,30),(3,37),(3,62),(3,137),(3,138),(3,142),(3,143),(4,22),(4,24),(4,28),(4,34),(4,36),(4,40),(4,65),(4,138),(4,140),(4,141),(4,146),(5,21),(5,23),(5,27),(5,33),(5,35),(5,39),(5,64),(5,137),(5,139),(5,141),(5,145),(6,23),(6,24),(6,25),(6,47),(6,48),(6,55),(6,67),(6,144),(6,147),(6,148),(6,152),(7,21),(7,22),(7,26),(7,49),(7,50),(7,56),(7,68),(7,143),(7,149),(7,150),(7,152),(8,18),(8,20),(8,27),(8,51),(8,53),(8,57),(8,69),(8,146),(8,147),(8,149),(8,151),(9,17),(9,19),(9,28),(9,52),(9,54),(9,58),(9,70),(9,145),(9,148),(9,150),(9,151),(10,29),(10,33),(10,44),(10,49),(10,52),(10,60),(10,71),(10,140),(10,147),(10,153),(10,155),(11,30),(11,34),(11,43),(11,50),(11,51),(11,61),(11,72),(11,139),(11,148),(11,153),(11,156),(12,31),(12,35),(12,42),(12,47),(12,54),(12,61),(12,73),(12,138),(12,149),(12,154),(12,155),(13,32),(13,36),(13,41),(13,48),(13,53),(13,60),(13,74),(13,137),(13,150),(13,154),(13,156),(14,39),(14,40),(14,46),(14,57),(14,58),(14,59),(14,76),(14,142),(14,152),(14,155),(14,156),(15,37),(15,38),(15,45),(15,55),(15,56),(15,59),(15,75),(15,141),(15,151),(15,153),(15,154),(16,62),(16,63),(16,64),(16,65),(16,66),(16,67),(16,68),(16,69),(16,70),(16,71),(16,72),(16,73),(16,74),(16,75),(16,76),(17,77),(17,92),(17,183),(17,188),(17,202),(17,210),(17,336),(18,78),(18,93),(18,182),(18,189),(18,203),(18,210),(18,337),(19,79),(19,94),(19,185),(19,188),(19,205),(19,211),(19,338),(20,80),(20,95),(20,184),(20,189),(20,204),(20,211),(20,339),(21,81),(21,96),(21,180),(21,186),(21,208),(21,212),(21,336),(22,82),(22,97),(22,181),(22,186),(22,209),(22,213),(22,337),(23,83),(23,98),(23,178),(23,187),(23,206),(23,212),(23,338),(24,84),(24,99),(24,179),(24,187),(24,207),(24,213),(24,339),(25,85),(25,100),(25,178),(25,179),(25,202),(25,203),(25,341),(26,86),(26,101),(26,180),(26,181),(26,204),(26,205),(26,341),(27,87),(27,102),(27,182),(27,184),(27,206),(27,208),(27,340),(28,88),(28,103),(28,183),(28,185),(28,207),(28,209),(28,340),(29,77),(29,104),(29,172),(29,190),(29,203),(29,214),(29,335),(30,78),(30,105),(30,173),(30,191),(30,202),(30,214),(30,334),(31,79),(31,106),(31,174),(31,193),(31,204),(31,215),(31,335),(32,80),(32,107),(32,175),(32,192),(32,205),(32,215),(32,334),(33,81),(33,108),(33,172),(33,194),(33,206),(33,216),(33,333),(34,82),(34,109),(34,173),(34,195),(34,207),(34,217),(34,333),(35,83),(35,110),(35,174),(35,196),(35,208),(35,216),(35,332),(36,84),(36,111),(36,175),(36,197),(36,209),(36,217),(36,332),(37,85),(37,112),(37,176),(37,198),(37,210),(37,214),(37,332),(38,86),(38,113),(38,176),(38,199),(38,211),(38,215),(38,333),(39,87),(39,114),(39,177),(39,200),(39,212),(39,216),(39,334),(40,88),(40,115),(40,177),(40,201),(40,213),(40,217),(40,335),(41,89),(41,116),(41,192),(41,197),(41,218),(41,220),(41,336),(42,90),(42,117),(42,193),(42,196),(42,218),(42,221),(42,337),(43,90),(43,118),(43,191),(43,195),(43,219),(43,220),(43,338),(44,89),(44,119),(44,190),(44,194),(44,219),(44,221),(44,339),(45,91),(45,120),(45,198),(45,199),(45,218),(45,219),(45,340),(46,91),(46,121),(46,200),(46,201),(46,220),(46,221),(46,341),(47,83),(47,122),(47,179),(47,193),(47,224),(47,228),(47,344),(48,84),(48,123),(48,178),(48,192),(48,225),(48,228),(48,345),(49,81),(49,124),(49,181),(49,190),(49,222),(49,229),(49,344),(50,82),(50,125),(50,180),(50,191),(50,223),(50,229),(50,345),(51,78),(51,126),(51,184),(51,195),(51,223),(51,230),(51,342),(52,77),(52,127),(52,185),(52,194),(52,222),(52,231),(52,342),(53,80),(53,128),(53,182),(53,197),(53,225),(53,230),(53,343),(54,79),(54,129),(54,183),(54,196),(54,224),(54,231),(54,343),(55,85),(55,130),(55,187),(55,199),(55,226),(55,228),(55,342),(56,86),(56,131),(56,186),(56,198),(56,226),(56,229),(56,343),(57,87),(57,132),(57,189),(57,201),(57,227),(57,230),(57,344),(58,88),(58,133),(58,188),(58,200),(58,227),(58,231),(58,345),(59,91),(59,136),(59,176),(59,177),(59,226),(59,227),(59,346),(60,89),(60,134),(60,172),(60,175),(60,222),(60,225),(60,346),(61,90),(61,135),(61,173),(61,174),(61,223),(61,224),(61,346),(62,92),(62,93),(62,100),(62,104),(62,105),(62,112),(62,232),(62,233),(62,237),(62,238),(63,94),(63,95),(63,101),(63,106),(63,107),(63,113),(63,234),(63,235),(63,237),(63,239),(64,96),(64,98),(64,102),(64,108),(64,110),(64,114),(64,232),(64,234),(64,236),(64,240),(65,97),(65,99),(65,103),(65,109),(65,111),(65,115),(65,233),(65,235),(65,236),(65,241),(66,116),(66,117),(66,118),(66,119),(66,120),(66,121),(66,238),(66,239),(66,240),(66,241),(67,98),(67,99),(67,100),(67,122),(67,123),(67,130),(67,239),(67,242),(67,243),(67,247),(68,96),(68,97),(68,101),(68,124),(68,125),(68,131),(68,238),(68,244),(68,245),(68,247),(69,93),(69,95),(69,102),(69,126),(69,128),(69,132),(69,241),(69,242),(69,244),(69,246),(70,92),(70,94),(70,103),(70,127),(70,129),(70,133),(70,240),(70,243),(70,245),(70,246),(71,104),(71,108),(71,119),(71,124),(71,127),(71,134),(71,235),(71,242),(71,248),(71,250),(72,105),(72,109),(72,118),(72,125),(72,126),(72,135),(72,234),(72,243),(72,248),(72,251),(73,106),(73,110),(73,117),(73,122),(73,129),(73,135),(73,233),(73,244),(73,249),(73,250),(74,107),(74,111),(74,116),(74,123),(74,128),(74,134),(74,232),(74,245),(74,249),(74,251),(75,112),(75,113),(75,120),(75,130),(75,131),(75,136),(75,236),(75,246),(75,248),(75,249),(76,114),(76,115),(76,121),(76,132),(76,133),(76,136),(76,237),(76,247),(76,250),(76,251),(77,157),(77,347),(77,355),(77,356),(78,158),(78,347),(78,354),(78,357),(79,159),(79,348),(79,355),(79,358),(80,160),(80,348),(80,354),(80,359),(81,161),(81,349),(81,353),(81,356),(82,162),(82,350),(82,353),(82,357),(83,163),(83,349),(83,352),(83,358),(84,164),(84,350),(84,352),(84,359),(85,165),(85,347),(85,352),(85,360),(86,166),(86,348),(86,353),(86,360),(87,167),(87,349),(87,354),(87,361),(88,168),(88,350),(88,355),(88,361),(89,169),(89,351),(89,356),(89,359),(90,170),(90,351),(90,357),(90,358),(91,171),(91,351),(91,360),(91,361),(92,157),(92,263),(92,268),(92,282),(92,290),(92,366),(93,158),(93,262),(93,269),(93,283),(93,290),(93,367),(94,159),(94,265),(94,268),(94,285),(94,291),(94,368),(95,160),(95,264),(95,269),(95,284),(95,291),(95,369),(96,161),(96,260),(96,266),(96,288),(96,292),(96,366),(97,162),(97,261),(97,266),(97,289),(97,293),(97,367),(98,163),(98,258),(98,267),(98,286),(98,292),(98,368),(99,164),(99,259),(99,267),(99,287),(99,293),(99,369),(100,165),(100,258),(100,259),(100,282),(100,283),(100,371),(101,166),(101,260),(101,261),(101,284),(101,285),(101,371),(102,167),(102,262),(102,264),(102,286),(102,288),(102,370),(103,168),(103,263),(103,265),(103,287),(103,289),(103,370),(104,157),(104,252),(104,270),(104,283),(104,294),(104,365),(105,158),(105,253),(105,271),(105,282),(105,294),(105,364),(106,159),(106,254),(106,273),(106,284),(106,295),(106,365),(107,160),(107,255),(107,272),(107,285),(107,295),(107,364),(108,161),(108,252),(108,274),(108,286),(108,296),(108,363),(109,162),(109,253),(109,275),(109,287),(109,297),(109,363),(110,163),(110,254),(110,276),(110,288),(110,296),(110,362),(111,164),(111,255),(111,277),(111,289),(111,297),(111,362),(112,165),(112,256),(112,278),(112,290),(112,294),(112,362),(113,166),(113,256),(113,279),(113,291),(113,295),(113,363),(114,167),(114,257),(114,280),(114,292),(114,296),(114,364),(115,168),(115,257),(115,281),(115,293),(115,297),(115,365),(116,169),(116,272),(116,277),(116,298),(116,300),(116,366),(117,170),(117,273),(117,276),(117,298),(117,301),(117,367),(118,170),(118,271),(118,275),(118,299),(118,300),(118,368),(119,169),(119,270),(119,274),(119,299),(119,301),(119,369),(120,171),(120,278),(120,279),(120,298),(120,299),(120,370),(121,171),(121,280),(121,281),(121,300),(121,301),(121,371),(122,163),(122,259),(122,273),(122,304),(122,308),(122,374),(123,164),(123,258),(123,272),(123,305),(123,308),(123,375),(124,161),(124,261),(124,270),(124,302),(124,309),(124,374),(125,162),(125,260),(125,271),(125,303),(125,309),(125,375),(126,158),(126,264),(126,275),(126,303),(126,310),(126,372),(127,157),(127,265),(127,274),(127,302),(127,311),(127,372),(128,160),(128,262),(128,277),(128,305),(128,310),(128,373),(129,159),(129,263),(129,276),(129,304),(129,311),(129,373),(130,165),(130,267),(130,279),(130,306),(130,308),(130,372),(131,166),(131,266),(131,278),(131,306),(131,309),(131,373),(132,167),(132,269),(132,281),(132,307),(132,310),(132,374),(133,168),(133,268),(133,280),(133,307),(133,311),(133,375),(134,169),(134,252),(134,255),(134,302),(134,305),(134,376),(135,170),(135,253),(135,254),(135,303),(135,304),(135,376),(136,171),(136,256),(136,257),(136,306),(136,307),(136,376),(137,172),(137,178),(137,182),(137,232),(137,332),(137,334),(137,336),(138,173),(138,179),(138,183),(138,233),(138,332),(138,335),(138,337),(139,174),(139,180),(139,184),(139,234),(139,333),(139,334),(139,338),(140,175),(140,181),(140,185),(140,235),(140,333),(140,335),(140,339),(141,177),(141,186),(141,187),(141,236),(141,332),(141,333),(141,340),(142,176),(142,188),(142,189),(142,237),(142,334),(142,335),(142,341),(143,190),(143,191),(143,198),(143,238),(143,336),(143,337),(143,341),(144,192),(144,193),(144,199),(144,239),(144,338),(144,339),(144,341),(145,194),(145,196),(145,200),(145,240),(145,336),(145,338),(145,340),(146,195),(146,197),(146,201),(146,241),(146,337),(146,339),(146,340),(147,203),(147,206),(147,225),(147,242),(147,339),(147,342),(147,344),(148,202),(148,207),(148,224),(148,243),(148,338),(148,342),(148,345),(149,204),(149,208),(149,223),(149,244),(149,337),(149,343),(149,344),(150,205),(150,209),(150,222),(150,245),(150,336),(150,343),(150,345),(151,210),(151,211),(151,227),(151,246),(151,340),(151,342),(151,343),(152,212),(152,213),(152,226),(152,247),(152,341),(152,344),(152,345),(153,214),(153,219),(153,229),(153,248),(153,333),(153,342),(153,346),(154,215),(154,218),(154,228),(154,249),(154,332),(154,343),(154,346),(155,216),(155,221),(155,231),(155,250),(155,335),(155,344),(155,346),(156,217),(156,220),(156,230),(156,251),(156,334),(156,345),(156,346),(157,377),(157,385),(157,386),(158,377),(158,384),(158,387),(159,378),(159,385),(159,388),(160,378),(160,384),(160,389),(161,379),(161,383),(161,386),(162,380),(162,383),(162,387),(163,379),(163,382),(163,388),(164,380),(164,382),(164,389),(165,377),(165,382),(165,390),(166,378),(166,383),(166,390),(167,379),(167,384),(167,391),(168,380),(168,385),(168,391),(169,381),(169,386),(169,389),(170,381),(170,387),(170,388),(171,381),(171,390),(171,391),(172,252),(172,312),(172,356),(172,393),(173,253),(173,313),(173,357),(173,393),(174,254),(174,314),(174,358),(174,393),(175,255),(175,315),(175,359),(175,393),(176,256),(176,316),(176,360),(176,393),(177,257),(177,317),(177,361),(177,393),(178,258),(178,312),(178,352),(178,396),(179,259),(179,313),(179,352),(179,397),(180,260),(180,314),(180,353),(180,396),(181,261),(181,315),(181,353),(181,397),(182,262),(182,312),(182,354),(182,394),(183,263),(183,313),(183,355),(183,394),(184,264),(184,314),(184,354),(184,395),(185,265),(185,315),(185,355),(185,395),(186,266),(186,317),(186,353),(186,394),(187,267),(187,317),(187,352),(187,395),(188,268),(188,316),(188,355),(188,396),(189,269),(189,316),(189,354),(189,397),(190,270),(190,318),(190,356),(190,397),(191,271),(191,318),(191,357),(191,396),(192,272),(192,319),(192,359),(192,396),(193,273),(193,319),(193,358),(193,397),(194,274),(194,320),(194,356),(194,395),(195,275),(195,321),(195,357),(195,395),(196,276),(196,320),(196,358),(196,394),(197,277),(197,321),(197,359),(197,394),(198,278),(198,318),(198,360),(198,394),(199,279),(199,319),(199,360),(199,395),(200,280),(200,320),(200,361),(200,396),(201,281),(201,321),(201,361),(201,397),(202,282),(202,313),(202,347),(202,396),(203,283),(203,312),(203,347),(203,397),(204,284),(204,314),(204,348),(204,397),(205,285),(205,315),(205,348),(205,396),(206,286),(206,312),(206,349),(206,395),(207,287),(207,313),(207,350),(207,395),(208,288),(208,314),(208,349),(208,394),(209,289),(209,315),(209,350),(209,394),(210,290),(210,316),(210,347),(210,394),(211,291),(211,316),(211,348),(211,395),(212,292),(212,317),(212,349),(212,396),(213,293),(213,317),(213,350),(213,397),(214,294),(214,318),(214,347),(214,393),(215,295),(215,319),(215,348),(215,393),(216,296),(216,320),(216,349),(216,393),(217,297),(217,321),(217,350),(217,393),(218,298),(218,319),(218,351),(218,394),(219,299),(219,318),(219,351),(219,395),(220,300),(220,321),(220,351),(220,396),(221,301),(221,320),(221,351),(221,397),(222,302),(222,315),(222,356),(222,392),(223,303),(223,314),(223,357),(223,392),(224,304),(224,313),(224,358),(224,392),(225,305),(225,312),(225,359),(225,392),(226,306),(226,317),(226,360),(226,392),(227,307),(227,316),(227,361),(227,392),(228,308),(228,319),(228,352),(228,392),(229,309),(229,318),(229,353),(229,392),(230,310),(230,321),(230,354),(230,392),(231,311),(231,320),(231,355),(231,392),(232,252),(232,258),(232,262),(232,362),(232,364),(232,366),(233,253),(233,259),(233,263),(233,362),(233,365),(233,367),(234,254),(234,260),(234,264),(234,363),(234,364),(234,368),(235,255),(235,261),(235,265),(235,363),(235,365),(235,369),(236,257),(236,266),(236,267),(236,362),(236,363),(236,370),(237,256),(237,268),(237,269),(237,364),(237,365),(237,371),(238,270),(238,271),(238,278),(238,366),(238,367),(238,371),(239,272),(239,273),(239,279),(239,368),(239,369),(239,371),(240,274),(240,276),(240,280),(240,366),(240,368),(240,370),(241,275),(241,277),(241,281),(241,367),(241,369),(241,370),(242,283),(242,286),(242,305),(242,369),(242,372),(242,374),(243,282),(243,287),(243,304),(243,368),(243,372),(243,375),(244,284),(244,288),(244,303),(244,367),(244,373),(244,374),(245,285),(245,289),(245,302),(245,366),(245,373),(245,375),(246,290),(246,291),(246,307),(246,370),(246,372),(246,373),(247,292),(247,293),(247,306),(247,371),(247,374),(247,375),(248,294),(248,299),(248,309),(248,363),(248,372),(248,376),(249,295),(249,298),(249,308),(249,362),(249,373),(249,376),(250,296),(250,301),(250,311),(250,365),(250,374),(250,376),(251,297),(251,300),(251,310),(251,364),(251,375),(251,376),(252,322),(252,386),(252,398),(253,323),(253,387),(253,398),(254,324),(254,388),(254,398),(255,325),(255,389),(255,398),(256,326),(256,390),(256,398),(257,327),(257,391),(257,398),(258,322),(258,382),(258,401),(259,323),(259,382),(259,402),(260,324),(260,383),(260,401),(261,325),(261,383),(261,402),(262,322),(262,384),(262,399),(263,323),(263,385),(263,399),(264,324),(264,384),(264,400),(265,325),(265,385),(265,400),(266,327),(266,383),(266,399),(267,327),(267,382),(267,400),(268,326),(268,385),(268,401),(269,326),(269,384),(269,402),(270,328),(270,386),(270,402),(271,328),(271,387),(271,401),(272,329),(272,389),(272,401),(273,329),(273,388),(273,402),(274,330),(274,386),(274,400),(275,331),(275,387),(275,400),(276,330),(276,388),(276,399),(277,331),(277,389),(277,399),(278,328),(278,390),(278,399),(279,329),(279,390),(279,400),(280,330),(280,391),(280,401),(281,331),(281,391),(281,402),(282,323),(282,377),(282,401),(283,322),(283,377),(283,402),(284,324),(284,378),(284,402),(285,325),(285,378),(285,401),(286,322),(286,379),(286,400),(287,323),(287,380),(287,400),(288,324),(288,379),(288,399),(289,325),(289,380),(289,399),(290,326),(290,377),(290,399),(291,326),(291,378),(291,400),(292,327),(292,379),(292,401),(293,327),(293,380),(293,402),(294,328),(294,377),(294,398),(295,329),(295,378),(295,398),(296,330),(296,379),(296,398),(297,331),(297,380),(297,398),(298,329),(298,381),(298,399),(299,328),(299,381),(299,400),(300,331),(300,381),(300,401),(301,330),(301,381),(301,402),(302,325),(302,386),(302,403),(303,324),(303,387),(303,403),(304,323),(304,388),(304,403),(305,322),(305,389),(305,403),(306,327),(306,390),(306,403),(307,326),(307,391),(307,403),(308,329),(308,382),(308,403),(309,328),(309,383),(309,403),(310,331),(310,384),(310,403),(311,330),(311,385),(311,403),(312,322),(312,404),(313,323),(313,404),(314,324),(314,404),(315,325),(315,404),(316,326),(316,404),(317,327),(317,404),(318,328),(318,404),(319,329),(319,404),(320,330),(320,404),(321,331),(321,404),(322,405),(323,405),(324,405),(325,405),(326,405),(327,405),(328,405),(329,405),(330,405),(331,405),(332,352),(332,362),(332,393),(332,394),(333,353),(333,363),(333,393),(333,395),(334,354),(334,364),(334,393),(334,396),(335,355),(335,365),(335,393),(335,397),(336,356),(336,366),(336,394),(336,396),(337,357),(337,367),(337,394),(337,397),(338,358),(338,368),(338,395),(338,396),(339,359),(339,369),(339,395),(339,397),(340,361),(340,370),(340,394),(340,395),(341,360),(341,371),(341,396),(341,397),(342,347),(342,372),(342,392),(342,395),(343,348),(343,373),(343,392),(343,394),(344,349),(344,374),(344,392),(344,397),(345,350),(345,375),(345,392),(345,396),(346,351),(346,376),(346,392),(346,393),(347,377),(347,404),(348,378),(348,404),(349,379),(349,404),(350,380),(350,404),(351,381),(351,404),(352,382),(352,404),(353,383),(353,404),(354,384),(354,404),(355,385),(355,404),(356,386),(356,404),(357,387),(357,404),(358,388),(358,404),(359,389),(359,404),(360,390),(360,404),(361,391),(361,404),(362,382),(362,398),(362,399),(363,383),(363,398),(363,400),(364,384),(364,398),(364,401),(365,385),(365,398),(365,402),(366,386),(366,399),(366,401),(367,387),(367,399),(367,402),(368,388),(368,400),(368,401),(369,389),(369,400),(369,402),(370,391),(370,399),(370,400),(371,390),(371,401),(371,402),(372,377),(372,400),(372,403),(373,378),(373,399),(373,403),(374,379),(374,402),(374,403),(375,380),(375,401),(375,403),(376,381),(376,398),(376,403),(377,405),(378,405),(379,405),(380,405),(381,405),(382,405),(383,405),(384,405),(385,405),(386,405),(387,405),(388,405),(389,405),(390,405),(391,405),(392,403),(392,404),(393,398),(393,404),(394,399),(394,404),(395,400),(395,404),(396,401),(396,404),(397,402),(397,404),(398,405),(399,405),(400,405),(401,405),(402,405),(403,405),(404,405)],406)
=> ? = 1
[1,2,1,1,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,21),(1,25),(1,33),(1,37),(1,54),(1,56),(1,140),(1,143),(1,147),(1,153),(2,20),(2,24),(2,32),(2,36),(2,53),(2,55),(2,140),(2,142),(2,146),(2,152),(3,23),(3,27),(3,35),(3,39),(3,53),(3,57),(3,141),(3,143),(3,144),(3,150),(4,22),(4,26),(4,34),(4,38),(4,54),(4,58),(4,141),(4,142),(4,145),(4,151),(5,30),(5,31),(5,42),(5,43),(5,52),(5,60),(5,142),(5,143),(5,149),(5,155),(6,28),(6,29),(6,40),(6,41),(6,52),(6,59),(6,140),(6,141),(6,148),(6,154),(7,17),(7,22),(7,23),(7,29),(7,45),(7,62),(7,67),(7,68),(7,146),(7,147),(7,149),(8,16),(8,20),(8,21),(8,28),(8,44),(8,61),(8,65),(8,66),(8,144),(8,145),(8,149),(9,18),(9,24),(9,26),(9,31),(9,46),(9,63),(9,69),(9,71),(9,144),(9,147),(9,148),(10,19),(10,25),(10,27),(10,30),(10,47),(10,64),(10,70),(10,72),(10,145),(10,146),(10,148),(11,16),(11,32),(11,33),(11,40),(11,48),(11,62),(11,69),(11,70),(11,150),(11,151),(11,155),(12,17),(12,34),(12,35),(12,41),(12,49),(12,61),(12,71),(12,72),(12,152),(12,153),(12,155),(13,18),(13,36),(13,38),(13,43),(13,50),(13,64),(13,65),(13,67),(13,150),(13,153),(13,154),(14,19),(14,37),(14,39),(14,42),(14,51),(14,63),(14,66),(14,68),(14,151),(14,152),(14,154),(15,44),(15,45),(15,46),(15,47),(15,48),(15,49),(15,50),(15,51),(15,55),(15,56),(15,57),(15,58),(15,59),(15,60),(16,88),(16,89),(16,96),(16,136),(16,292),(16,293),(16,297),(17,90),(17,91),(17,97),(17,137),(17,294),(17,295),(17,297),(18,92),(18,94),(18,99),(18,138),(18,292),(18,295),(18,296),(19,93),(19,95),(19,98),(19,139),(19,293),(19,294),(19,296),(20,76),(20,88),(20,112),(20,184),(20,208),(20,232),(20,325),(21,77),(21,89),(21,113),(21,185),(21,209),(21,232),(21,326),(22,78),(22,90),(22,114),(22,186),(22,211),(22,233),(22,325),(23,79),(23,91),(23,115),(23,187),(23,210),(23,233),(23,326),(24,80),(24,92),(24,116),(24,190),(24,208),(24,234),(24,324),(25,81),(25,93),(25,117),(25,191),(25,209),(25,235),(25,324),(26,82),(26,94),(26,118),(26,188),(26,211),(26,234),(26,323),(27,83),(27,95),(27,119),(27,189),(27,210),(27,235),(27,323),(28,84),(28,96),(28,120),(28,192),(28,212),(28,232),(28,323),(29,85),(29,97),(29,121),(29,193),(29,212),(29,233),(29,324),(30,86),(30,98),(30,122),(30,194),(30,213),(30,235),(30,325),(31,87),(31,99),(31,123),(31,195),(31,213),(31,234),(31,326),(32,80),(32,88),(32,124),(32,198),(32,214),(32,236),(32,329),(33,81),(33,89),(33,125),(33,199),(33,215),(33,236),(33,330),(34,82),(34,90),(34,126),(34,196),(34,217),(34,237),(34,329),(35,83),(35,91),(35,127),(35,197),(35,216),(35,237),(35,330),(36,76),(36,92),(36,128),(36,202),(36,214),(36,238),(36,328),(37,77),(37,93),(37,129),(37,203),(37,215),(37,239),(37,328),(38,78),(38,94),(38,130),(38,200),(38,217),(38,238),(38,327),(39,79),(39,95),(39,131),(39,201),(39,216),(39,239),(39,327),(40,85),(40,96),(40,132),(40,204),(40,218),(40,236),(40,327),(41,84),(41,97),(41,133),(41,205),(41,218),(41,237),(41,328),(42,87),(42,98),(42,134),(42,207),(42,219),(42,239),(42,329),(43,86),(43,99),(43,135),(43,206),(43,219),(43,238),(43,330),(44,100),(44,104),(44,105),(44,112),(44,113),(44,120),(44,136),(44,220),(44,221),(44,225),(45,101),(45,106),(45,107),(45,114),(45,115),(45,121),(45,137),(45,222),(45,223),(45,225),(46,102),(46,108),(46,110),(46,116),(46,118),(46,123),(46,138),(46,220),(46,223),(46,224),(47,103),(47,109),(47,111),(47,117),(47,119),(47,122),(47,139),(47,221),(47,222),(47,224),(48,101),(48,108),(48,109),(48,124),(48,125),(48,132),(48,136),(48,226),(48,227),(48,231),(49,100),(49,110),(49,111),(49,126),(49,127),(49,133),(49,137),(49,228),(49,229),(49,231),(50,103),(50,104),(50,106),(50,128),(50,130),(50,135),(50,138),(50,226),(50,229),(50,230),(51,102),(51,105),(51,107),(51,129),(51,131),(51,134),(51,139),(51,227),(51,228),(51,230),(52,75),(52,212),(52,213),(52,218),(52,219),(52,304),(53,73),(53,208),(53,210),(53,214),(53,216),(53,304),(54,74),(54,209),(54,211),(54,215),(54,217),(54,304),(55,73),(55,112),(55,116),(55,124),(55,128),(55,156),(55,158),(55,222),(55,228),(56,74),(56,113),(56,117),(56,125),(56,129),(56,156),(56,159),(56,223),(56,229),(57,73),(57,115),(57,119),(57,127),(57,131),(57,157),(57,159),(57,220),(57,226),(58,74),(58,114),(58,118),(58,126),(58,130),(58,157),(58,158),(58,221),(58,227),(59,75),(59,120),(59,121),(59,132),(59,133),(59,156),(59,157),(59,224),(59,230),(60,75),(60,122),(60,123),(60,134),(60,135),(60,158),(60,159),(60,225),(60,231),(61,84),(61,100),(61,184),(61,185),(61,196),(61,197),(61,297),(62,85),(62,101),(62,186),(62,187),(62,198),(62,199),(62,297),(63,87),(63,102),(63,188),(63,190),(63,201),(63,203),(63,296),(64,86),(64,103),(64,189),(64,191),(64,200),(64,202),(64,296),(65,76),(65,104),(65,185),(65,192),(65,200),(65,206),(65,292),(66,77),(66,105),(66,184),(66,192),(66,201),(66,207),(66,293),(67,78),(67,106),(67,187),(67,193),(67,202),(67,206),(67,295),(68,79),(68,107),(68,186),(68,193),(68,203),(68,207),(68,294),(69,80),(69,108),(69,188),(69,195),(69,199),(69,204),(69,292),(70,81),(70,109),(70,189),(70,194),(70,198),(70,204),(70,293),(71,82),(71,110),(71,190),(71,195),(71,197),(71,205),(71,295),(72,83),(72,111),(72,191),(72,194),(72,196),(72,205),(72,294),(73,240),(73,242),(73,246),(73,248),(73,337),(74,241),(74,243),(74,247),(74,249),(74,337),(75,244),(75,245),(75,250),(75,251),(75,337),(76,172),(76,317),(76,346),(76,352),(77,173),(77,318),(77,346),(77,353),(78,174),(78,320),(78,347),(78,352),(79,175),(79,319),(79,347),(79,353),(80,176),(80,317),(80,348),(80,351),(81,177),(81,318),(81,349),(81,351),(82,178),(82,320),(82,348),(82,350),(83,179),(83,319),(83,349),(83,350),(84,180),(84,321),(84,346),(84,350),(85,181),(85,321),(85,347),(85,351),(86,182),(86,322),(86,349),(86,352),(87,183),(87,322),(87,348),(87,353),(88,160),(88,284),(88,317),(88,364),(89,161),(89,284),(89,318),(89,365),(90,162),(90,285),(90,320),(90,364),(91,163),(91,285),(91,319),(91,365),(92,164),(92,286),(92,317),(92,363),(93,165),(93,287),(93,318),(93,363),(94,166),(94,286),(94,320),(94,362),(95,167),(95,287),(95,319),(95,362),(96,168),(96,284),(96,321),(96,362),(97,169),(97,285),(97,321),(97,363),(98,170),(98,287),(98,322),(98,364),(99,171),(99,286),(99,322),(99,365),(100,180),(100,260),(100,261),(100,272),(100,273),(100,316),(101,181),(101,262),(101,263),(101,274),(101,275),(101,316),(102,183),(102,264),(102,266),(102,277),(102,279),(102,315),(103,182),(103,265),(103,267),(103,276),(103,278),(103,315),(104,172),(104,261),(104,268),(104,276),(104,282),(104,311),(105,173),(105,260),(105,268),(105,277),(105,283),(105,312),(106,174),(106,263),(106,269),(106,278),(106,282),(106,314),(107,175),(107,262),(107,269),(107,279),(107,283),(107,313),(108,176),(108,264),(108,271),(108,275),(108,280),(108,311),(109,177),(109,265),(109,270),(109,274),(109,280),(109,312),(110,178),(110,266),(110,271),(110,273),(110,281),(110,314),(111,179),(111,267),(111,270),(111,272),(111,281),(111,313),(112,160),(112,172),(112,240),(112,252),(112,260),(112,340),(113,161),(113,173),(113,241),(113,252),(113,261),(113,341),(114,162),(114,174),(114,243),(114,253),(114,262),(114,340),(115,163),(115,175),(115,242),(115,253),(115,263),(115,341),(116,164),(116,176),(116,240),(116,254),(116,266),(116,339),(117,165),(117,177),(117,241),(117,255),(117,267),(117,339),(118,166),(118,178),(118,243),(118,254),(118,264),(118,338),(119,167),(119,179),(119,242),(119,255),(119,265),(119,338),(120,168),(120,180),(120,244),(120,252),(120,268),(120,338),(121,169),(121,181),(121,244),(121,253),(121,269),(121,339),(122,170),(122,182),(122,245),(122,255),(122,270),(122,340),(123,171),(123,183),(123,245),(123,254),(123,271),(123,341),(124,160),(124,176),(124,246),(124,256),(124,274),(124,344),(125,161),(125,177),(125,247),(125,256),(125,275),(125,345),(126,162),(126,178),(126,249),(126,257),(126,272),(126,344),(127,163),(127,179),(127,248),(127,257),(127,273),(127,345),(128,164),(128,172),(128,246),(128,258),(128,278),(128,343),(129,165),(129,173),(129,247),(129,259),(129,279),(129,343),(130,166),(130,174),(130,249),(130,258),(130,276),(130,342),(131,167),(131,175),(131,248),(131,259),(131,277),(131,342),(132,168),(132,181),(132,250),(132,256),(132,280),(132,342),(133,169),(133,180),(133,250),(133,257),(133,281),(133,343),(134,170),(134,183),(134,251),(134,259),(134,283),(134,344),(135,171),(135,182),(135,251),(135,258),(135,282),(135,345),(136,160),(136,161),(136,168),(136,311),(136,312),(136,316),(137,162),(137,163),(137,169),(137,313),(137,314),(137,316),(138,164),(138,166),(138,171),(138,311),(138,314),(138,315),(139,165),(139,167),(139,170),(139,312),(139,313),(139,315),(140,156),(140,232),(140,236),(140,304),(140,324),(140,328),(141,157),(141,233),(141,237),(141,304),(141,323),(141,327),(142,158),(142,234),(142,238),(142,304),(142,325),(142,329),(143,159),(143,235),(143,239),(143,304),(143,326),(143,330),(144,197),(144,201),(144,208),(144,220),(144,292),(144,323),(144,326),(145,196),(145,200),(145,209),(145,221),(145,293),(145,323),(145,325),(146,198),(146,202),(146,210),(146,222),(146,294),(146,324),(146,325),(147,199),(147,203),(147,211),(147,223),(147,295),(147,324),(147,326),(148,204),(148,205),(148,213),(148,224),(148,296),(148,323),(148,324),(149,206),(149,207),(149,212),(149,225),(149,297),(149,325),(149,326),(150,187),(150,189),(150,214),(150,226),(150,292),(150,327),(150,330),(151,186),(151,188),(151,215),(151,227),(151,293),(151,327),(151,329),(152,184),(152,190),(152,216),(152,228),(152,294),(152,328),(152,329),(153,185),(153,191),(153,217),(153,229),(153,295),(153,328),(153,330),(154,192),(154,193),(154,219),(154,230),(154,296),(154,327),(154,328),(155,194),(155,195),(155,218),(155,231),(155,297),(155,329),(155,330),(156,252),(156,256),(156,337),(156,339),(156,343),(157,253),(157,257),(157,337),(157,338),(157,342),(158,254),(158,258),(158,337),(158,340),(158,344),(159,255),(159,259),(159,337),(159,341),(159,345),(160,288),(160,331),(160,370),(161,288),(161,332),(161,371),(162,289),(162,334),(162,370),(163,289),(163,333),(163,371),(164,290),(164,331),(164,369),(165,291),(165,332),(165,369),(166,290),(166,334),(166,368),(167,291),(167,333),(167,368),(168,288),(168,335),(168,368),(169,289),(169,335),(169,369),(170,291),(170,336),(170,370),(171,290),(171,336),(171,371),(172,331),(172,354),(172,360),(173,332),(173,354),(173,361),(174,334),(174,355),(174,360),(175,333),(175,355),(175,361),(176,331),(176,356),(176,359),(177,332),(177,357),(177,359),(178,334),(178,356),(178,358),(179,333),(179,357),(179,358),(180,335),(180,354),(180,358),(181,335),(181,355),(181,359),(182,336),(182,357),(182,360),(183,336),(183,356),(183,361),(184,260),(184,298),(184,346),(184,364),(185,261),(185,299),(185,346),(185,365),(186,262),(186,301),(186,347),(186,364),(187,263),(187,300),(187,347),(187,365),(188,264),(188,301),(188,348),(188,362),(189,265),(189,300),(189,349),(189,362),(190,266),(190,298),(190,348),(190,363),(191,267),(191,299),(191,349),(191,363),(192,268),(192,302),(192,346),(192,362),(193,269),(193,302),(193,347),(193,363),(194,270),(194,303),(194,349),(194,364),(195,271),(195,303),(195,348),(195,365),(196,272),(196,299),(196,350),(196,364),(197,273),(197,298),(197,350),(197,365),(198,274),(198,300),(198,351),(198,364),(199,275),(199,301),(199,351),(199,365),(200,276),(200,299),(200,352),(200,362),(201,277),(201,298),(201,353),(201,362),(202,278),(202,300),(202,352),(202,363),(203,279),(203,301),(203,353),(203,363),(204,280),(204,303),(204,351),(204,362),(205,281),(205,303),(205,350),(205,363),(206,282),(206,302),(206,352),(206,365),(207,283),(207,302),(207,353),(207,364),(208,240),(208,298),(208,317),(208,367),(209,241),(209,299),(209,318),(209,367),(210,242),(210,300),(210,319),(210,367),(211,243),(211,301),(211,320),(211,367),(212,244),(212,302),(212,321),(212,367),(213,245),(213,303),(213,322),(213,367),(214,246),(214,300),(214,317),(214,366),(215,247),(215,301),(215,318),(215,366),(216,248),(216,298),(216,319),(216,366),(217,249),(217,299),(217,320),(217,366),(218,250),(218,303),(218,321),(218,366),(219,251),(219,302),(219,322),(219,366),(220,240),(220,273),(220,277),(220,311),(220,338),(220,341),(221,241),(221,272),(221,276),(221,312),(221,338),(221,340),(222,242),(222,274),(222,278),(222,313),(222,339),(222,340),(223,243),(223,275),(223,279),(223,314),(223,339),(223,341),(224,245),(224,280),(224,281),(224,315),(224,338),(224,339),(225,244),(225,282),(225,283),(225,316),(225,340),(225,341),(226,246),(226,263),(226,265),(226,311),(226,342),(226,345),(227,247),(227,262),(227,264),(227,312),(227,342),(227,344),(228,248),(228,260),(228,266),(228,313),(228,343),(228,344),(229,249),(229,261),(229,267),(229,314),(229,343),(229,345),(230,251),(230,268),(230,269),(230,315),(230,342),(230,343),(231,250),(231,270),(231,271),(231,316),(231,344),(231,345),(232,252),(232,284),(232,346),(232,367),(233,253),(233,285),(233,347),(233,367),(234,254),(234,286),(234,348),(234,367),(235,255),(235,287),(235,349),(235,367),(236,256),(236,284),(236,351),(236,366),(237,257),(237,285),(237,350),(237,366),(238,258),(238,286),(238,352),(238,366),(239,259),(239,287),(239,353),(239,366),(240,305),(240,331),(240,372),(241,306),(241,332),(241,372),(242,307),(242,333),(242,372),(243,308),(243,334),(243,372),(244,309),(244,335),(244,372),(245,310),(245,336),(245,372),(246,307),(246,331),(246,373),(247,308),(247,332),(247,373),(248,305),(248,333),(248,373),(249,306),(249,334),(249,373),(250,310),(250,335),(250,373),(251,309),(251,336),(251,373),(252,288),(252,354),(252,372),(253,289),(253,355),(253,372),(254,290),(254,356),(254,372),(255,291),(255,357),(255,372),(256,288),(256,359),(256,373),(257,289),(257,358),(257,373),(258,290),(258,360),(258,373),(259,291),(259,361),(259,373),(260,305),(260,354),(260,370),(261,306),(261,354),(261,371),(262,308),(262,355),(262,370),(263,307),(263,355),(263,371),(264,308),(264,356),(264,368),(265,307),(265,357),(265,368),(266,305),(266,356),(266,369),(267,306),(267,357),(267,369),(268,309),(268,354),(268,368),(269,309),(269,355),(269,369),(270,310),(270,357),(270,370),(271,310),(271,356),(271,371),(272,306),(272,358),(272,370),(273,305),(273,358),(273,371),(274,307),(274,359),(274,370),(275,308),(275,359),(275,371),(276,306),(276,360),(276,368),(277,305),(277,361),(277,368),(278,307),(278,360),(278,369),(279,308),(279,361),(279,369),(280,310),(280,359),(280,368),(281,310),(281,358),(281,369),(282,309),(282,360),(282,371),(283,309),(283,361),(283,370),(284,288),(284,374),(285,289),(285,374),(286,290),(286,374),(287,291),(287,374),(288,375),(289,375),(290,375),(291,375),(292,311),(292,317),(292,362),(292,365),(293,312),(293,318),(293,362),(293,364),(294,313),(294,319),(294,363),(294,364),(295,314),(295,320),(295,363),(295,365),(296,315),(296,322),(296,362),(296,363),(297,316),(297,321),(297,364),(297,365),(298,305),(298,374),(299,306),(299,374),(300,307),(300,374),(301,308),(301,374),(302,309),(302,374),(303,310),(303,374),(304,337),(304,366),(304,367),(305,375),(306,375),(307,375),(308,375),(309,375),(310,375),(311,331),(311,368),(311,371),(312,332),(312,368),(312,370),(313,333),(313,369),(313,370),(314,334),(314,369),(314,371),(315,336),(315,368),(315,369),(316,335),(316,370),(316,371),(317,331),(317,374),(318,332),(318,374),(319,333),(319,374),(320,334),(320,374),(321,335),(321,374),(322,336),(322,374),(323,338),(323,350),(323,362),(323,367),(324,339),(324,351),(324,363),(324,367),(325,340),(325,352),(325,364),(325,367),(326,341),(326,353),(326,365),(326,367),(327,342),(327,347),(327,362),(327,366),(328,343),(328,346),(328,363),(328,366),(329,344),(329,348),(329,364),(329,366),(330,345),(330,349),(330,365),(330,366),(331,375),(332,375),(333,375),(334,375),(335,375),(336,375),(337,372),(337,373),(338,358),(338,368),(338,372),(339,359),(339,369),(339,372),(340,360),(340,370),(340,372),(341,361),(341,371),(341,372),(342,355),(342,368),(342,373),(343,354),(343,369),(343,373),(344,356),(344,370),(344,373),(345,357),(345,371),(345,373),(346,354),(346,374),(347,355),(347,374),(348,356),(348,374),(349,357),(349,374),(350,358),(350,374),(351,359),(351,374),(352,360),(352,374),(353,361),(353,374),(354,375),(355,375),(356,375),(357,375),(358,375),(359,375),(360,375),(361,375),(362,368),(362,374),(363,369),(363,374),(364,370),(364,374),(365,371),(365,374),(366,373),(366,374),(367,372),(367,374),(368,375),(369,375),(370,375),(371,375),(372,375),(373,375),(374,375)],376)
=> ? = 1
[1,2,1,2,1] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,42),(1,43),(1,44),(1,57),(1,58),(1,59),(1,60),(1,61),(1,62),(1,63),(1,64),(1,65),(1,66),(2,26),(2,31),(2,32),(2,37),(2,38),(2,41),(2,47),(2,50),(2,66),(2,102),(2,103),(3,25),(3,28),(3,30),(3,34),(3,36),(3,40),(3,46),(3,49),(3,65),(3,101),(3,103),(4,24),(4,27),(4,29),(4,33),(4,35),(4,39),(4,45),(4,48),(4,64),(4,101),(4,102),(5,20),(5,29),(5,30),(5,47),(5,51),(5,52),(5,57),(5,137),(5,138),(5,143),(6,18),(6,27),(6,31),(6,46),(6,53),(6,55),(6,58),(6,137),(6,139),(6,144),(7,19),(7,28),(7,32),(7,45),(7,54),(7,56),(7,59),(7,138),(7,139),(7,145),(8,23),(8,35),(8,36),(8,50),(8,53),(8,54),(8,60),(8,140),(8,141),(8,143),(9,21),(9,33),(9,37),(9,49),(9,51),(9,56),(9,61),(9,140),(9,142),(9,144),(10,22),(10,34),(10,38),(10,48),(10,52),(10,55),(10,62),(10,141),(10,142),(10,145),(11,15),(11,16),(11,17),(11,24),(11,25),(11,26),(11,63),(11,143),(11,144),(11,145),(12,15),(12,19),(12,22),(12,39),(12,42),(12,73),(12,103),(12,137),(12,140),(13,16),(13,18),(13,21),(13,40),(13,43),(13,73),(13,102),(13,138),(13,141),(14,17),(14,20),(14,23),(14,41),(14,44),(14,73),(14,101),(14,139),(14,142),(15,116),(15,125),(15,149),(15,188),(15,197),(15,283),(16,117),(16,126),(16,150),(16,188),(16,196),(16,284),(17,118),(17,127),(17,151),(17,188),(17,195),(17,285),(18,120),(18,128),(18,150),(18,190),(18,198),(18,282),(19,119),(19,129),(19,149),(19,191),(19,199),(19,282),(20,121),(20,130),(20,151),(20,189),(20,200),(20,282),(21,123),(21,131),(21,150),(21,193),(21,202),(21,281),(22,122),(22,132),(22,149),(22,194),(22,201),(22,281),(23,124),(23,133),(23,151),(23,192),(23,203),(23,281),(24,86),(24,116),(24,152),(24,154),(24,158),(24,195),(24,196),(25,87),(25,117),(25,153),(25,155),(25,159),(25,195),(25,197),(26,88),(26,118),(26,156),(26,157),(26,160),(26,196),(26,197),(27,67),(27,82),(27,89),(27,152),(27,190),(27,204),(27,263),(28,68),(28,83),(28,90),(28,153),(28,191),(28,205),(28,263),(29,69),(29,80),(29,91),(29,154),(29,189),(29,204),(29,264),(30,70),(30,81),(30,92),(30,155),(30,189),(30,205),(30,265),(31,71),(31,85),(31,93),(31,156),(31,190),(31,206),(31,265),(32,72),(32,84),(32,94),(32,157),(32,191),(32,206),(32,264),(33,69),(33,76),(33,95),(33,152),(33,193),(33,207),(33,266),(34,70),(34,77),(34,96),(34,153),(34,194),(34,208),(34,266),(35,67),(35,74),(35,97),(35,154),(35,192),(35,207),(35,267),(36,68),(36,75),(36,98),(36,155),(36,192),(36,208),(36,268),(37,72),(37,79),(37,99),(37,156),(37,193),(37,209),(37,268),(38,71),(38,78),(38,100),(38,157),(38,194),(38,209),(38,267),(39,116),(39,119),(39,122),(39,134),(39,204),(39,207),(39,301),(40,117),(40,120),(40,123),(40,135),(40,205),(40,208),(40,301),(41,118),(41,121),(41,124),(41,136),(41,206),(41,209),(41,301),(42,125),(42,129),(42,132),(42,134),(42,210),(42,213),(42,218),(42,219),(43,126),(43,128),(43,131),(43,135),(43,211),(43,214),(43,217),(43,219),(44,127),(44,130),(44,133),(44,136),(44,212),(44,215),(44,216),(44,219),(45,74),(45,76),(45,104),(45,119),(45,158),(45,263),(45,264),(46,75),(46,77),(46,105),(46,120),(46,159),(46,263),(46,265),(47,78),(47,79),(47,106),(47,121),(47,160),(47,264),(47,265),(48,80),(48,82),(48,107),(48,122),(48,158),(48,266),(48,267),(49,81),(49,83),(49,108),(49,123),(49,159),(49,266),(49,268),(50,84),(50,85),(50,109),(50,124),(50,160),(50,267),(50,268),(51,69),(51,79),(51,81),(51,110),(51,200),(51,202),(51,283),(52,70),(52,78),(52,80),(52,111),(52,200),(52,201),(52,284),(53,67),(53,75),(53,85),(53,112),(53,198),(53,203),(53,283),(54,68),(54,74),(54,84),(54,113),(54,199),(54,203),(54,284),(55,71),(55,77),(55,82),(55,114),(55,198),(55,201),(55,285),(56,72),(56,76),(56,83),(56,115),(56,199),(56,202),(56,285),(57,91),(57,92),(57,106),(57,110),(57,111),(57,130),(57,148),(57,210),(57,211),(58,89),(58,93),(58,105),(58,112),(58,114),(58,128),(58,147),(58,210),(58,212),(59,90),(59,94),(59,104),(59,113),(59,115),(59,129),(59,146),(59,211),(59,212),(60,97),(60,98),(60,109),(60,112),(60,113),(60,133),(60,148),(60,213),(60,214),(61,95),(61,99),(61,108),(61,110),(61,115),(61,131),(61,147),(61,213),(61,215),(62,96),(62,100),(62,107),(62,111),(62,114),(62,132),(62,146),(62,214),(62,215),(63,86),(63,87),(63,88),(63,125),(63,126),(63,127),(63,146),(63,147),(63,148),(64,86),(64,89),(64,91),(64,95),(64,97),(64,104),(64,107),(64,134),(64,216),(64,217),(65,87),(65,90),(65,92),(65,96),(65,98),(65,105),(65,108),(65,135),(65,216),(65,218),(66,88),(66,93),(66,94),(66,99),(66,100),(66,106),(66,109),(66,136),(66,217),(66,218),(67,164),(67,296),(67,298),(67,305),(68,165),(68,297),(68,298),(68,306),(69,166),(69,295),(69,299),(69,305),(70,167),(70,295),(70,300),(70,306),(71,168),(71,296),(71,300),(71,307),(72,169),(72,297),(72,299),(72,307),(73,188),(73,219),(73,281),(73,282),(73,301),(74,176),(74,236),(74,298),(74,323),(75,177),(75,237),(75,298),(75,324),(76,178),(76,236),(76,299),(76,322),(77,179),(77,237),(77,300),(77,322),(78,180),(78,238),(78,300),(78,323),(79,181),(79,238),(79,299),(79,324),(80,182),(80,239),(80,295),(80,323),(81,183),(81,240),(81,295),(81,324),(82,184),(82,239),(82,296),(82,322),(83,185),(83,240),(83,297),(83,322),(84,186),(84,241),(84,297),(84,323),(85,187),(85,241),(85,296),(85,324),(86,161),(86,227),(86,228),(86,254),(86,257),(86,259),(87,162),(87,227),(87,229),(87,255),(87,258),(87,260),(88,163),(88,228),(88,229),(88,256),(88,261),(88,262),(89,164),(89,184),(89,220),(89,231),(89,257),(89,286),(90,165),(90,185),(90,221),(90,232),(90,258),(90,286),(91,166),(91,182),(91,220),(91,230),(91,259),(91,287),(92,167),(92,183),(92,221),(92,230),(92,260),(92,288),(93,168),(93,187),(93,222),(93,231),(93,261),(93,288),(94,169),(94,186),(94,222),(94,232),(94,262),(94,287),(95,166),(95,178),(95,223),(95,234),(95,257),(95,289),(96,167),(96,179),(96,224),(96,235),(96,258),(96,289),(97,164),(97,176),(97,223),(97,233),(97,259),(97,290),(98,165),(98,177),(98,224),(98,233),(98,260),(98,291),(99,169),(99,181),(99,225),(99,234),(99,261),(99,291),(100,168),(100,180),(100,225),(100,235),(100,262),(100,290),(101,189),(101,192),(101,195),(101,216),(101,263),(101,266),(101,301),(102,190),(102,193),(102,196),(102,217),(102,264),(102,267),(102,301),(103,191),(103,194),(103,197),(103,218),(103,265),(103,268),(103,301),(104,170),(104,176),(104,178),(104,254),(104,286),(104,287),(105,171),(105,177),(105,179),(105,255),(105,286),(105,288),(106,172),(106,180),(106,181),(106,256),(106,287),(106,288),(107,173),(107,182),(107,184),(107,254),(107,289),(107,290),(108,174),(108,183),(108,185),(108,255),(108,289),(108,291),(109,175),(109,186),(109,187),(109,256),(109,290),(109,291),(110,166),(110,181),(110,183),(110,244),(110,246),(110,308),(111,167),(111,180),(111,182),(111,244),(111,245),(111,309),(112,164),(112,177),(112,187),(112,242),(112,247),(112,308),(113,165),(113,176),(113,186),(113,243),(113,247),(113,309),(114,168),(114,179),(114,184),(114,242),(114,245),(114,310),(115,169),(115,178),(115,185),(115,243),(115,246),(115,310),(116,161),(116,248),(116,305),(116,311),(117,162),(117,249),(117,306),(117,311),(118,163),(118,250),(118,307),(118,311),(119,170),(119,236),(119,248),(119,328),(120,171),(120,237),(120,249),(120,328),(121,172),(121,238),(121,250),(121,328),(122,173),(122,239),(122,248),(122,329),(123,174),(123,240),(123,249),(123,329),(124,175),(124,241),(124,250),(124,329),(125,161),(125,226),(125,229),(125,251),(125,308),(126,162),(126,226),(126,228),(126,252),(126,309),(127,163),(127,226),(127,227),(127,253),(127,310),(128,171),(128,231),(128,242),(128,252),(128,303),(129,170),(129,232),(129,243),(129,251),(129,303),(130,172),(130,230),(130,244),(130,253),(130,303),(131,174),(131,234),(131,246),(131,252),(131,304),(132,173),(132,235),(132,245),(132,251),(132,304),(133,175),(133,233),(133,247),(133,253),(133,304),(134,161),(134,170),(134,173),(134,220),(134,223),(134,302),(135,162),(135,171),(135,174),(135,221),(135,224),(135,302),(136,163),(136,172),(136,175),(136,222),(136,225),(136,302),(137,201),(137,204),(137,210),(137,265),(137,282),(137,283),(138,202),(138,205),(138,211),(138,264),(138,282),(138,284),(139,203),(139,206),(139,212),(139,263),(139,282),(139,285),(140,199),(140,207),(140,213),(140,268),(140,281),(140,283),(141,198),(141,208),(141,214),(141,267),(141,281),(141,284),(142,200),(142,209),(142,215),(142,266),(142,281),(142,285),(143,148),(143,151),(143,154),(143,155),(143,160),(143,283),(143,284),(144,147),(144,150),(144,152),(144,156),(144,159),(144,283),(144,285),(145,146),(145,149),(145,153),(145,157),(145,158),(145,284),(145,285),(146,251),(146,254),(146,258),(146,262),(146,309),(146,310),(147,252),(147,255),(147,257),(147,261),(147,308),(147,310),(148,253),(148,256),(148,259),(148,260),(148,308),(148,309),(149,248),(149,251),(149,280),(149,332),(150,249),(150,252),(150,279),(150,332),(151,250),(151,253),(151,278),(151,332),(152,257),(152,279),(152,305),(152,322),(153,258),(153,280),(153,306),(153,322),(154,259),(154,278),(154,305),(154,323),(155,260),(155,278),(155,306),(155,324),(156,261),(156,279),(156,307),(156,324),(157,262),(157,280),(157,307),(157,323),(158,248),(158,254),(158,322),(158,323),(159,249),(159,255),(159,322),(159,324),(160,250),(160,256),(160,323),(160,324),(161,269),(161,318),(161,321),(162,270),(162,319),(162,321),(163,271),(163,320),(163,321),(164,313),(164,315),(164,318),(165,314),(165,315),(165,319),(166,312),(166,316),(166,318),(167,312),(167,317),(167,319),(168,313),(168,317),(168,320),(169,314),(169,316),(169,320),(170,269),(170,272),(170,330),(171,270),(171,273),(171,330),(172,271),(172,274),(172,330),(173,269),(173,275),(173,331),(174,270),(174,276),(174,331),(175,271),(175,277),(175,331),(176,272),(176,315),(176,325),(177,273),(177,315),(177,326),(178,272),(178,316),(178,327),(179,273),(179,317),(179,327),(180,274),(180,317),(180,325),(181,274),(181,316),(181,326),(182,275),(182,312),(182,325),(183,276),(183,312),(183,326),(184,275),(184,313),(184,327),(185,276),(185,314),(185,327),(186,277),(186,314),(186,325),(187,277),(187,313),(187,326),(188,226),(188,311),(188,332),(189,230),(189,278),(189,295),(189,328),(190,231),(190,279),(190,296),(190,328),(191,232),(191,280),(191,297),(191,328),(192,233),(192,278),(192,298),(192,329),(193,234),(193,279),(193,299),(193,329),(194,235),(194,280),(194,300),(194,329),(195,227),(195,278),(195,311),(195,322),(196,228),(196,279),(196,311),(196,323),(197,229),(197,280),(197,311),(197,324),(198,237),(198,242),(198,296),(198,332),(199,236),(199,243),(199,297),(199,332),(200,238),(200,244),(200,295),(200,332),(201,239),(201,245),(201,300),(201,332),(202,240),(202,246),(202,299),(202,332),(203,241),(203,247),(203,298),(203,332),(204,220),(204,239),(204,305),(204,328),(205,221),(205,240),(205,306),(205,328),(206,222),(206,241),(206,307),(206,328),(207,223),(207,236),(207,305),(207,329),(208,224),(208,237),(208,306),(208,329),(209,225),(209,238),(209,307),(209,329),(210,220),(210,245),(210,288),(210,303),(210,308),(211,221),(211,246),(211,287),(211,303),(211,309),(212,222),(212,247),(212,286),(212,303),(212,310),(213,223),(213,243),(213,291),(213,304),(213,308),(214,224),(214,242),(214,290),(214,304),(214,309),(215,225),(215,244),(215,289),(215,304),(215,310),(216,227),(216,230),(216,233),(216,286),(216,289),(216,302),(217,228),(217,231),(217,234),(217,287),(217,290),(217,302),(218,229),(218,232),(218,235),(218,288),(218,291),(218,302),(219,226),(219,302),(219,303),(219,304),(220,275),(220,318),(220,330),(221,276),(221,319),(221,330),(222,277),(222,320),(222,330),(223,272),(223,318),(223,331),(224,273),(224,319),(224,331),(225,274),(225,320),(225,331),(226,321),(226,333),(227,294),(227,321),(227,327),(228,292),(228,321),(228,325),(229,293),(229,321),(229,326),(230,294),(230,312),(230,330),(231,292),(231,313),(231,330),(232,293),(232,314),(232,330),(233,294),(233,315),(233,331),(234,292),(234,316),(234,331),(235,293),(235,317),(235,331),(236,272),(236,334),(237,273),(237,334),(238,274),(238,334),(239,275),(239,334),(240,276),(240,334),(241,277),(241,334),(242,273),(242,313),(242,333),(243,272),(243,314),(243,333),(244,274),(244,312),(244,333),(245,275),(245,317),(245,333),(246,276),(246,316),(246,333),(247,277),(247,315),(247,333),(248,269),(248,334),(249,270),(249,334),(250,271),(250,334),(251,269),(251,293),(251,333),(252,270),(252,292),(252,333),(253,271),(253,294),(253,333),(254,269),(254,325),(254,327),(255,270),(255,326),(255,327),(256,271),(256,325),(256,326),(257,292),(257,318),(257,327),(258,293),(258,319),(258,327),(259,294),(259,318),(259,325),(260,294),(260,319),(260,326),(261,292),(261,320),(261,326),(262,293),(262,320),(262,325),(263,286),(263,298),(263,322),(263,328),(264,287),(264,299),(264,323),(264,328),(265,288),(265,300),(265,324),(265,328),(266,289),(266,295),(266,322),(266,329),(267,290),(267,296),(267,323),(267,329),(268,291),(268,297),(268,324),(268,329),(269,335),(270,335),(271,335),(272,335),(273,335),(274,335),(275,335),(276,335),(277,335),(278,294),(278,334),(279,292),(279,334),(280,293),(280,334),(281,304),(281,329),(281,332),(282,303),(282,328),(282,332),(283,305),(283,308),(283,324),(283,332),(284,306),(284,309),(284,323),(284,332),(285,307),(285,310),(285,322),(285,332),(286,315),(286,327),(286,330),(287,316),(287,325),(287,330),(288,317),(288,326),(288,330),(289,312),(289,327),(289,331),(290,313),(290,325),(290,331),(291,314),(291,326),(291,331),(292,335),(293,335),(294,335),(295,312),(295,334),(296,313),(296,334),(297,314),(297,334),(298,315),(298,334),(299,316),(299,334),(300,317),(300,334),(301,302),(301,311),(301,328),(301,329),(302,321),(302,330),(302,331),(303,330),(303,333),(304,331),(304,333),(305,318),(305,334),(306,319),(306,334),(307,320),(307,334),(308,318),(308,326),(308,333),(309,319),(309,325),(309,333),(310,320),(310,327),(310,333),(311,321),(311,334),(312,335),(313,335),(314,335),(315,335),(316,335),(317,335),(318,335),(319,335),(320,335),(321,335),(322,327),(322,334),(323,325),(323,334),(324,326),(324,334),(325,335),(326,335),(327,335),(328,330),(328,334),(329,331),(329,334),(330,335),(331,335),(332,333),(332,334),(333,335),(334,335)],336)
=> ? = 1
[1,2,1,3] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,14),(1,15),(1,16),(1,53),(1,54),(1,55),(1,56),(1,57),(1,58),(1,59),(1,60),(1,61),(2,19),(2,30),(2,31),(2,36),(2,37),(2,45),(2,46),(2,55),(2,140),(2,143),(3,18),(3,27),(3,29),(3,33),(3,35),(3,44),(3,46),(3,54),(3,139),(3,142),(4,17),(4,26),(4,28),(4,32),(4,34),(4,44),(4,45),(4,53),(4,138),(4,141),(5,22),(5,28),(5,29),(5,38),(5,39),(5,47),(5,48),(5,56),(5,135),(5,143),(6,21),(6,26),(6,30),(6,40),(6,42),(6,47),(6,49),(6,57),(6,136),(6,142),(7,20),(7,27),(7,31),(7,41),(7,43),(7,48),(7,49),(7,58),(7,137),(7,141),(8,25),(8,34),(8,35),(8,40),(8,41),(8,50),(8,51),(8,59),(8,135),(8,140),(9,24),(9,32),(9,36),(9,38),(9,43),(9,50),(9,52),(9,60),(9,136),(9,139),(10,23),(10,33),(10,37),(10,39),(10,42),(10,51),(10,52),(10,61),(10,137),(10,138),(11,16),(11,23),(11,24),(11,25),(11,62),(11,141),(11,142),(11,143),(12,15),(12,20),(12,21),(12,22),(12,62),(12,138),(12,139),(12,140),(13,14),(13,17),(13,18),(13,19),(13,62),(13,135),(13,136),(13,137),(14,75),(14,76),(14,77),(14,144),(14,184),(14,185),(14,186),(15,78),(15,79),(15,80),(15,144),(15,187),(15,188),(15,189),(16,81),(16,82),(16,83),(16,144),(16,190),(16,191),(16,192),(17,63),(17,64),(17,75),(17,193),(17,195),(17,259),(18,63),(18,65),(18,76),(18,194),(18,196),(18,260),(19,64),(19,65),(19,77),(19,197),(19,198),(19,261),(20,66),(20,68),(20,78),(20,202),(20,203),(20,259),(21,67),(21,68),(21,79),(21,201),(21,204),(21,260),(22,66),(22,67),(22,80),(22,199),(22,200),(22,261),(23,69),(23,71),(23,81),(23,208),(23,209),(23,259),(24,70),(24,71),(24,82),(24,207),(24,210),(24,260),(25,69),(25,70),(25,83),(25,205),(25,206),(25,261),(26,93),(26,112),(26,114),(26,129),(26,193),(26,201),(26,256),(27,94),(27,113),(27,115),(27,130),(27,194),(27,202),(27,256),(28,95),(28,111),(28,114),(28,131),(28,195),(28,199),(28,257),(29,96),(29,111),(29,115),(29,132),(29,196),(29,200),(29,258),(30,97),(30,112),(30,116),(30,133),(30,197),(30,204),(30,258),(31,98),(31,113),(31,116),(31,134),(31,198),(31,203),(31,257),(32,99),(32,118),(32,123),(32,131),(32,193),(32,207),(32,253),(33,100),(33,119),(33,124),(33,132),(33,194),(33,208),(33,253),(34,101),(34,117),(34,123),(34,129),(34,195),(34,205),(34,254),(35,102),(35,117),(35,124),(35,130),(35,196),(35,206),(35,255),(36,103),(36,118),(36,125),(36,134),(36,197),(36,210),(36,255),(37,104),(37,119),(37,125),(37,133),(37,198),(37,209),(37,254),(38,105),(38,121),(38,128),(38,131),(38,200),(38,210),(38,251),(39,106),(39,120),(39,128),(39,132),(39,199),(39,209),(39,250),(40,107),(40,122),(40,126),(40,129),(40,204),(40,206),(40,251),(41,108),(41,122),(41,127),(41,130),(41,203),(41,205),(41,250),(42,109),(42,120),(42,126),(42,133),(42,201),(42,208),(42,252),(43,110),(43,121),(43,127),(43,134),(43,202),(43,207),(43,252),(44,63),(44,72),(44,86),(44,111),(44,117),(44,253),(44,256),(45,64),(45,72),(45,84),(45,112),(45,118),(45,254),(45,257),(46,65),(46,72),(46,85),(46,113),(46,119),(46,255),(46,258),(47,67),(47,73),(47,87),(47,114),(47,120),(47,251),(47,258),(48,66),(48,73),(48,88),(48,115),(48,121),(48,250),(48,257),(49,68),(49,73),(49,89),(49,116),(49,122),(49,252),(49,256),(50,70),(50,74),(50,90),(50,123),(50,127),(50,251),(50,255),(51,69),(51,74),(51,91),(51,124),(51,126),(51,250),(51,254),(52,71),(52,74),(52,92),(52,125),(52,128),(52,252),(52,253),(53,75),(53,84),(53,86),(53,93),(53,95),(53,99),(53,101),(53,187),(53,190),(54,76),(54,85),(54,86),(54,94),(54,96),(54,100),(54,102),(54,188),(54,191),(55,77),(55,84),(55,85),(55,97),(55,98),(55,103),(55,104),(55,189),(55,192),(56,80),(56,87),(56,88),(56,95),(56,96),(56,105),(56,106),(56,184),(56,192),(57,79),(57,87),(57,89),(57,93),(57,97),(57,107),(57,109),(57,185),(57,191),(58,78),(58,88),(58,89),(58,94),(58,98),(58,108),(58,110),(58,186),(58,190),(59,83),(59,90),(59,91),(59,101),(59,102),(59,107),(59,108),(59,184),(59,189),(60,82),(60,90),(60,92),(60,99),(60,103),(60,105),(60,110),(60,185),(60,188),(61,81),(61,91),(61,92),(61,100),(61,104),(61,106),(61,109),(61,186),(61,187),(62,144),(62,259),(62,260),(62,261),(63,145),(63,159),(63,213),(63,300),(64,145),(64,157),(64,211),(64,298),(65,145),(65,158),(65,212),(65,299),(66,146),(66,160),(66,215),(66,298),(67,146),(67,161),(67,214),(67,299),(68,146),(68,162),(68,216),(68,300),(69,147),(69,163),(69,218),(69,298),(70,147),(70,164),(70,217),(70,299),(71,147),(71,165),(71,219),(71,300),(72,145),(72,148),(72,293),(72,294),(73,146),(73,149),(73,292),(73,294),(74,147),(74,150),(74,292),(74,293),(75,157),(75,159),(75,220),(75,222),(75,280),(76,158),(76,159),(76,221),(76,223),(76,281),(77,157),(77,158),(77,224),(77,225),(77,282),(78,160),(78,162),(78,229),(78,230),(78,280),(79,161),(79,162),(79,228),(79,231),(79,281),(80,160),(80,161),(80,226),(80,227),(80,282),(81,163),(81,165),(81,235),(81,236),(81,280),(82,164),(82,165),(82,234),(82,237),(82,281),(83,163),(83,164),(83,232),(83,233),(83,282),(84,148),(84,157),(84,167),(84,173),(84,275),(84,278),(85,148),(85,158),(85,168),(85,174),(85,276),(85,279),(86,148),(86,159),(86,166),(86,172),(86,274),(86,277),(87,149),(87,161),(87,169),(87,175),(87,272),(87,279),(88,149),(88,160),(88,170),(88,176),(88,271),(88,278),(89,149),(89,162),(89,171),(89,177),(89,273),(89,277),(90,150),(90,164),(90,178),(90,182),(90,272),(90,276),(91,150),(91,163),(91,179),(91,181),(91,271),(91,275),(92,150),(92,165),(92,180),(92,183),(92,273),(92,274),(93,151),(93,167),(93,169),(93,220),(93,228),(93,277),(94,152),(94,168),(94,170),(94,221),(94,229),(94,277),(95,153),(95,166),(95,169),(95,222),(95,226),(95,278),(96,154),(96,166),(96,170),(96,223),(96,227),(96,279),(97,155),(97,167),(97,171),(97,224),(97,231),(97,279),(98,156),(98,168),(98,171),(98,225),(98,230),(98,278),(99,153),(99,173),(99,178),(99,220),(99,234),(99,274),(100,154),(100,174),(100,179),(100,221),(100,235),(100,274),(101,151),(101,172),(101,178),(101,222),(101,232),(101,275),(102,152),(102,172),(102,179),(102,223),(102,233),(102,276),(103,156),(103,173),(103,180),(103,224),(103,237),(103,276),(104,155),(104,174),(104,180),(104,225),(104,236),(104,275),(105,153),(105,176),(105,183),(105,227),(105,237),(105,272),(106,154),(106,175),(106,183),(106,226),(106,236),(106,271),(107,151),(107,177),(107,181),(107,231),(107,233),(107,272),(108,152),(108,177),(108,182),(108,230),(108,232),(108,271),(109,155),(109,175),(109,181),(109,228),(109,235),(109,273),(110,156),(110,176),(110,182),(110,229),(110,234),(110,273),(111,166),(111,213),(111,267),(111,294),(112,167),(112,211),(112,265),(112,294),(113,168),(113,212),(113,266),(113,294),(114,169),(114,214),(114,262),(114,294),(115,170),(115,215),(115,263),(115,294),(116,171),(116,216),(116,264),(116,294),(117,172),(117,213),(117,268),(117,293),(118,173),(118,211),(118,269),(118,293),(119,174),(119,212),(119,270),(119,293),(120,175),(120,214),(120,270),(120,292),(121,176),(121,215),(121,269),(121,292),(122,177),(122,216),(122,268),(122,292),(123,178),(123,217),(123,262),(123,293),(124,179),(124,218),(124,263),(124,293),(125,180),(125,219),(125,264),(125,293),(126,181),(126,218),(126,265),(126,292),(127,182),(127,217),(127,266),(127,292),(128,183),(128,219),(128,267),(128,292),(129,151),(129,262),(129,265),(129,268),(130,152),(130,263),(130,266),(130,268),(131,153),(131,262),(131,267),(131,269),(132,154),(132,263),(132,267),(132,270),(133,155),(133,264),(133,265),(133,270),(134,156),(134,264),(134,266),(134,269),(135,184),(135,195),(135,196),(135,250),(135,251),(135,261),(136,185),(136,193),(136,197),(136,251),(136,252),(136,260),(137,186),(137,194),(137,198),(137,250),(137,252),(137,259),(138,187),(138,199),(138,201),(138,253),(138,254),(138,259),(139,188),(139,200),(139,202),(139,253),(139,255),(139,260),(140,189),(140,203),(140,204),(140,254),(140,255),(140,261),(141,190),(141,205),(141,207),(141,256),(141,257),(141,259),(142,191),(142,206),(142,208),(142,256),(142,258),(142,260),(143,192),(143,209),(143,210),(143,257),(143,258),(143,261),(144,280),(144,281),(144,282),(145,238),(145,304),(146,239),(146,304),(147,240),(147,304),(148,238),(148,296),(148,297),(149,239),(149,295),(149,297),(150,240),(150,295),(150,296),(151,283),(151,287),(151,289),(152,284),(152,288),(152,289),(153,283),(153,286),(153,290),(154,284),(154,286),(154,291),(155,285),(155,287),(155,291),(156,285),(156,288),(156,290),(157,238),(157,241),(157,301),(158,238),(158,242),(158,302),(159,238),(159,243),(159,303),(160,239),(160,245),(160,301),(161,239),(161,244),(161,302),(162,239),(162,246),(162,303),(163,240),(163,248),(163,301),(164,240),(164,247),(164,302),(165,240),(165,249),(165,303),(166,243),(166,286),(166,297),(167,241),(167,287),(167,297),(168,242),(168,288),(168,297),(169,244),(169,283),(169,297),(170,245),(170,284),(170,297),(171,246),(171,285),(171,297),(172,243),(172,289),(172,296),(173,241),(173,290),(173,296),(174,242),(174,291),(174,296),(175,244),(175,291),(175,295),(176,245),(176,290),(176,295),(177,246),(177,289),(177,295),(178,247),(178,283),(178,296),(179,248),(179,284),(179,296),(180,249),(180,285),(180,296),(181,248),(181,287),(181,295),(182,247),(182,288),(182,295),(183,249),(183,286),(183,295),(184,222),(184,223),(184,271),(184,272),(184,282),(185,220),(185,224),(185,272),(185,273),(185,281),(186,221),(186,225),(186,271),(186,273),(186,280),(187,226),(187,228),(187,274),(187,275),(187,280),(188,227),(188,229),(188,274),(188,276),(188,281),(189,230),(189,231),(189,275),(189,276),(189,282),(190,232),(190,234),(190,277),(190,278),(190,280),(191,233),(191,235),(191,277),(191,279),(191,281),(192,236),(192,237),(192,278),(192,279),(192,282),(193,211),(193,220),(193,262),(193,300),(194,212),(194,221),(194,263),(194,300),(195,213),(195,222),(195,262),(195,298),(196,213),(196,223),(196,263),(196,299),(197,211),(197,224),(197,264),(197,299),(198,212),(198,225),(198,264),(198,298),(199,214),(199,226),(199,267),(199,298),(200,215),(200,227),(200,267),(200,299),(201,214),(201,228),(201,265),(201,300),(202,215),(202,229),(202,266),(202,300),(203,216),(203,230),(203,266),(203,298),(204,216),(204,231),(204,265),(204,299),(205,217),(205,232),(205,268),(205,298),(206,218),(206,233),(206,268),(206,299),(207,217),(207,234),(207,269),(207,300),(208,218),(208,235),(208,270),(208,300),(209,219),(209,236),(209,270),(209,298),(210,219),(210,237),(210,269),(210,299),(211,241),(211,304),(212,242),(212,304),(213,243),(213,304),(214,244),(214,304),(215,245),(215,304),(216,246),(216,304),(217,247),(217,304),(218,248),(218,304),(219,249),(219,304),(220,241),(220,283),(220,303),(221,242),(221,284),(221,303),(222,243),(222,283),(222,301),(223,243),(223,284),(223,302),(224,241),(224,285),(224,302),(225,242),(225,285),(225,301),(226,244),(226,286),(226,301),(227,245),(227,286),(227,302),(228,244),(228,287),(228,303),(229,245),(229,288),(229,303),(230,246),(230,288),(230,301),(231,246),(231,287),(231,302),(232,247),(232,289),(232,301),(233,248),(233,289),(233,302),(234,247),(234,290),(234,303),(235,248),(235,291),(235,303),(236,249),(236,291),(236,301),(237,249),(237,290),(237,302),(238,305),(239,305),(240,305),(241,305),(242,305),(243,305),(244,305),(245,305),(246,305),(247,305),(248,305),(249,305),(250,263),(250,271),(250,292),(250,298),(251,262),(251,272),(251,292),(251,299),(252,264),(252,273),(252,292),(252,300),(253,267),(253,274),(253,293),(253,300),(254,265),(254,275),(254,293),(254,298),(255,266),(255,276),(255,293),(255,299),(256,268),(256,277),(256,294),(256,300),(257,269),(257,278),(257,294),(257,298),(258,270),(258,279),(258,294),(258,299),(259,280),(259,298),(259,300),(260,281),(260,299),(260,300),(261,282),(261,298),(261,299),(262,283),(262,304),(263,284),(263,304),(264,285),(264,304),(265,287),(265,304),(266,288),(266,304),(267,286),(267,304),(268,289),(268,304),(269,290),(269,304),(270,291),(270,304),(271,284),(271,295),(271,301),(272,283),(272,295),(272,302),(273,285),(273,295),(273,303),(274,286),(274,296),(274,303),(275,287),(275,296),(275,301),(276,288),(276,296),(276,302),(277,289),(277,297),(277,303),(278,290),(278,297),(278,301),(279,291),(279,297),(279,302),(280,301),(280,303),(281,302),(281,303),(282,301),(282,302),(283,305),(284,305),(285,305),(286,305),(287,305),(288,305),(289,305),(290,305),(291,305),(292,295),(292,304),(293,296),(293,304),(294,297),(294,304),(295,305),(296,305),(297,305),(298,301),(298,304),(299,302),(299,304),(300,303),(300,304),(301,305),(302,305),(303,305),(304,305)],306)
=> ? = 1
[1,2,2,1,1] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,17),(1,48),(1,49),(1,50),(1,51),(1,52),(1,53),(1,54),(1,55),(1,56),(1,57),(1,58),(2,21),(2,22),(2,23),(2,42),(2,43),(2,44),(2,45),(2,46),(2,47),(2,58),(2,80),(3,18),(3,19),(3,20),(3,36),(3,37),(3,38),(3,39),(3,40),(3,41),(3,57),(3,80),(4,16),(4,20),(4,23),(4,32),(4,35),(4,50),(4,122),(4,125),(4,126),(5,15),(5,19),(5,22),(5,31),(5,34),(5,49),(5,121),(5,124),(5,126),(6,14),(6,18),(6,21),(6,30),(6,33),(6,48),(6,120),(6,123),(6,126),(7,25),(7,28),(7,30),(7,36),(7,42),(7,51),(7,117),(7,121),(7,122),(8,24),(8,29),(8,31),(8,37),(8,43),(8,52),(8,118),(8,120),(8,122),(9,26),(9,27),(9,32),(9,38),(9,44),(9,53),(9,119),(9,120),(9,121),(10,27),(10,29),(10,33),(10,39),(10,45),(10,54),(10,117),(10,124),(10,125),(11,26),(11,28),(11,34),(11,40),(11,46),(11,55),(11,118),(11,123),(11,125),(12,24),(12,25),(12,35),(12,41),(12,47),(12,56),(12,119),(12,123),(12,124),(13,14),(13,15),(13,16),(13,17),(13,80),(13,117),(13,118),(13,119),(14,59),(14,128),(14,132),(14,180),(14,251),(15,60),(15,128),(15,133),(15,181),(15,252),(16,61),(16,128),(16,134),(16,182),(16,253),(17,59),(17,60),(17,61),(17,127),(17,171),(17,172),(17,173),(18,62),(18,81),(18,84),(18,129),(18,132),(18,159),(18,162),(19,63),(19,82),(19,85),(19,129),(19,133),(19,160),(19,163),(20,64),(20,83),(20,86),(20,129),(20,134),(20,161),(20,164),(21,65),(21,87),(21,90),(21,130),(21,132),(21,165),(21,168),(22,66),(22,88),(22,91),(22,130),(22,133),(22,166),(22,169),(23,67),(23,89),(23,92),(23,130),(23,134),(23,167),(23,170),(24,93),(24,99),(24,111),(24,184),(24,188),(24,251),(25,94),(25,100),(25,112),(25,183),(25,188),(25,252),(26,95),(26,101),(26,113),(26,185),(26,187),(26,251),(27,96),(27,102),(27,114),(27,185),(27,186),(27,252),(28,97),(28,103),(28,115),(28,183),(28,187),(28,253),(29,98),(29,104),(29,116),(29,184),(29,186),(29,253),(30,81),(30,87),(30,105),(30,180),(30,183),(30,255),(31,82),(31,88),(31,106),(31,181),(31,184),(31,255),(32,83),(32,89),(32,107),(32,182),(32,185),(32,255),(33,84),(33,90),(33,108),(33,180),(33,186),(33,254),(34,85),(34,91),(34,109),(34,181),(34,187),(34,254),(35,86),(35,92),(35,110),(35,182),(35,188),(35,254),(36,68),(36,81),(36,94),(36,97),(36,160),(36,161),(36,228),(37,69),(37,82),(37,93),(37,98),(37,159),(37,161),(37,229),(38,70),(38,83),(38,95),(38,96),(38,159),(38,160),(38,230),(39,71),(39,84),(39,96),(39,98),(39,163),(39,164),(39,228),(40,72),(40,85),(40,95),(40,97),(40,162),(40,164),(40,229),(41,73),(41,86),(41,93),(41,94),(41,162),(41,163),(41,230),(42,74),(42,87),(42,100),(42,103),(42,166),(42,167),(42,228),(43,75),(43,88),(43,99),(43,104),(43,165),(43,167),(43,229),(44,76),(44,89),(44,101),(44,102),(44,165),(44,166),(44,230),(45,77),(45,90),(45,102),(45,104),(45,169),(45,170),(45,228),(46,78),(46,91),(46,101),(46,103),(46,168),(46,170),(46,229),(47,79),(47,92),(47,99),(47,100),(47,168),(47,169),(47,230),(48,59),(48,62),(48,65),(48,105),(48,108),(48,131),(48,174),(48,177),(49,60),(49,63),(49,66),(49,106),(49,109),(49,131),(49,175),(49,178),(50,61),(50,64),(50,67),(50,107),(50,110),(50,131),(50,176),(50,179),(51,68),(51,74),(51,105),(51,112),(51,115),(51,171),(51,175),(51,176),(52,69),(52,75),(52,106),(52,111),(52,116),(52,172),(52,174),(52,176),(53,70),(53,76),(53,107),(53,113),(53,114),(53,173),(53,174),(53,175),(54,71),(54,77),(54,108),(54,114),(54,116),(54,171),(54,178),(54,179),(55,72),(55,78),(55,109),(55,113),(55,115),(55,172),(55,177),(55,179),(56,73),(56,79),(56,110),(56,111),(56,112),(56,173),(56,177),(56,178),(57,62),(57,63),(57,64),(57,68),(57,69),(57,70),(57,71),(57,72),(57,73),(57,127),(58,65),(58,66),(58,67),(58,74),(58,75),(58,76),(58,77),(58,78),(58,79),(58,127),(59,189),(59,210),(59,211),(59,256),(60,190),(60,210),(60,212),(60,257),(61,191),(61,210),(61,213),(61,258),(62,135),(62,138),(62,211),(62,214),(62,216),(62,219),(63,136),(63,139),(63,212),(63,214),(63,217),(63,220),(64,137),(64,140),(64,213),(64,214),(64,218),(64,221),(65,141),(65,144),(65,211),(65,215),(65,222),(65,225),(66,142),(66,145),(66,212),(66,215),(66,223),(66,226),(67,143),(67,146),(67,213),(67,215),(67,224),(67,227),(68,135),(68,148),(68,151),(68,217),(68,218),(68,248),(69,136),(69,147),(69,152),(69,216),(69,218),(69,249),(70,137),(70,149),(70,150),(70,216),(70,217),(70,250),(71,138),(71,150),(71,152),(71,220),(71,221),(71,248),(72,139),(72,149),(72,151),(72,219),(72,221),(72,249),(73,140),(73,147),(73,148),(73,219),(73,220),(73,250),(74,141),(74,154),(74,157),(74,223),(74,224),(74,248),(75,142),(75,153),(75,158),(75,222),(75,224),(75,249),(76,143),(76,155),(76,156),(76,222),(76,223),(76,250),(77,144),(77,156),(77,158),(77,226),(77,227),(77,248),(78,145),(78,155),(78,157),(78,225),(78,227),(78,249),(79,146),(79,153),(79,154),(79,225),(79,226),(79,250),(80,127),(80,132),(80,133),(80,134),(80,228),(80,229),(80,230),(81,135),(81,192),(81,245),(81,259),(82,136),(82,193),(82,246),(82,259),(83,137),(83,194),(83,247),(83,259),(84,138),(84,195),(84,245),(84,260),(85,139),(85,196),(85,246),(85,260),(86,140),(86,197),(86,247),(86,260),(87,141),(87,198),(87,245),(87,261),(88,142),(88,199),(88,246),(88,261),(89,143),(89,200),(89,247),(89,261),(90,144),(90,201),(90,245),(90,262),(91,145),(91,202),(91,246),(91,262),(92,146),(92,203),(92,247),(92,262),(93,147),(93,193),(93,197),(93,272),(94,148),(94,192),(94,197),(94,273),(95,149),(95,194),(95,196),(95,272),(96,150),(96,194),(96,195),(96,273),(97,151),(97,192),(97,196),(97,274),(98,152),(98,193),(98,195),(98,274),(99,153),(99,199),(99,203),(99,272),(100,154),(100,198),(100,203),(100,273),(101,155),(101,200),(101,202),(101,272),(102,156),(102,200),(102,201),(102,273),(103,157),(103,198),(103,202),(103,274),(104,158),(104,199),(104,201),(104,274),(105,135),(105,141),(105,189),(105,204),(105,263),(106,136),(106,142),(106,190),(106,205),(106,263),(107,137),(107,143),(107,191),(107,206),(107,263),(108,138),(108,144),(108,189),(108,207),(108,264),(109,139),(109,145),(109,190),(109,208),(109,264),(110,140),(110,146),(110,191),(110,209),(110,264),(111,147),(111,153),(111,205),(111,209),(111,256),(112,148),(112,154),(112,204),(112,209),(112,257),(113,149),(113,155),(113,206),(113,208),(113,256),(114,150),(114,156),(114,206),(114,207),(114,257),(115,151),(115,157),(115,204),(115,208),(115,258),(116,152),(116,158),(116,205),(116,207),(116,258),(117,171),(117,180),(117,228),(117,252),(117,253),(118,172),(118,181),(118,229),(118,251),(118,253),(119,173),(119,182),(119,230),(119,251),(119,252),(120,159),(120,165),(120,174),(120,186),(120,251),(120,255),(121,160),(121,166),(121,175),(121,187),(121,252),(121,255),(122,161),(122,167),(122,176),(122,188),(122,253),(122,255),(123,162),(123,168),(123,177),(123,183),(123,251),(123,254),(124,163),(124,169),(124,178),(124,184),(124,252),(124,254),(125,164),(125,170),(125,179),(125,185),(125,253),(125,254),(126,128),(126,129),(126,130),(126,131),(126,254),(126,255),(127,211),(127,212),(127,213),(127,248),(127,249),(127,250),(128,210),(128,243),(128,278),(129,214),(129,243),(129,259),(129,260),(130,215),(130,243),(130,261),(130,262),(131,210),(131,214),(131,215),(131,263),(131,264),(132,211),(132,243),(132,245),(132,272),(133,212),(133,243),(133,246),(133,273),(134,213),(134,243),(134,247),(134,274),(135,231),(135,265),(135,268),(136,232),(136,266),(136,268),(137,233),(137,267),(137,268),(138,234),(138,265),(138,269),(139,235),(139,266),(139,269),(140,236),(140,267),(140,269),(141,237),(141,265),(141,270),(142,238),(142,266),(142,270),(143,239),(143,267),(143,270),(144,240),(144,265),(144,271),(145,241),(145,266),(145,271),(146,242),(146,267),(146,271),(147,232),(147,236),(147,275),(148,231),(148,236),(148,276),(149,233),(149,235),(149,275),(150,233),(150,234),(150,276),(151,231),(151,235),(151,277),(152,232),(152,234),(152,277),(153,238),(153,242),(153,275),(154,237),(154,242),(154,276),(155,239),(155,241),(155,275),(156,239),(156,240),(156,276),(157,237),(157,241),(157,277),(158,238),(158,240),(158,277),(159,195),(159,216),(159,259),(159,272),(160,196),(160,217),(160,259),(160,273),(161,197),(161,218),(161,259),(161,274),(162,192),(162,219),(162,260),(162,272),(163,193),(163,220),(163,260),(163,273),(164,194),(164,221),(164,260),(164,274),(165,201),(165,222),(165,261),(165,272),(166,202),(166,223),(166,261),(166,273),(167,203),(167,224),(167,261),(167,274),(168,198),(168,225),(168,262),(168,272),(169,199),(169,226),(169,262),(169,273),(170,200),(170,227),(170,262),(170,274),(171,189),(171,248),(171,257),(171,258),(172,190),(172,249),(172,256),(172,258),(173,191),(173,250),(173,256),(173,257),(174,207),(174,216),(174,222),(174,256),(174,263),(175,208),(175,217),(175,223),(175,257),(175,263),(176,209),(176,218),(176,224),(176,258),(176,263),(177,204),(177,219),(177,225),(177,256),(177,264),(178,205),(178,220),(178,226),(178,257),(178,264),(179,206),(179,221),(179,227),(179,258),(179,264),(180,189),(180,245),(180,278),(181,190),(181,246),(181,278),(182,191),(182,247),(182,278),(183,192),(183,198),(183,204),(183,278),(184,193),(184,199),(184,205),(184,278),(185,194),(185,200),(185,206),(185,278),(186,195),(186,201),(186,207),(186,278),(187,196),(187,202),(187,208),(187,278),(188,197),(188,203),(188,209),(188,278),(189,265),(189,279),(190,266),(190,279),(191,267),(191,279),(192,231),(192,280),(193,232),(193,280),(194,233),(194,280),(195,234),(195,280),(196,235),(196,280),(197,236),(197,280),(198,237),(198,280),(199,238),(199,280),(200,239),(200,280),(201,240),(201,280),(202,241),(202,280),(203,242),(203,280),(204,231),(204,237),(204,279),(205,232),(205,238),(205,279),(206,233),(206,239),(206,279),(207,234),(207,240),(207,279),(208,235),(208,241),(208,279),(209,236),(209,242),(209,279),(210,244),(210,279),(211,244),(211,265),(211,275),(212,244),(212,266),(212,276),(213,244),(213,267),(213,277),(214,244),(214,268),(214,269),(215,244),(215,270),(215,271),(216,234),(216,268),(216,275),(217,235),(217,268),(217,276),(218,236),(218,268),(218,277),(219,231),(219,269),(219,275),(220,232),(220,269),(220,276),(221,233),(221,269),(221,277),(222,240),(222,270),(222,275),(223,241),(223,270),(223,276),(224,242),(224,270),(224,277),(225,237),(225,271),(225,275),(226,238),(226,271),(226,276),(227,239),(227,271),(227,277),(228,245),(228,248),(228,273),(228,274),(229,246),(229,249),(229,272),(229,274),(230,247),(230,250),(230,272),(230,273),(231,281),(232,281),(233,281),(234,281),(235,281),(236,281),(237,281),(238,281),(239,281),(240,281),(241,281),(242,281),(243,244),(243,280),(244,281),(245,265),(245,280),(246,266),(246,280),(247,267),(247,280),(248,265),(248,276),(248,277),(249,266),(249,275),(249,277),(250,267),(250,275),(250,276),(251,256),(251,272),(251,278),(252,257),(252,273),(252,278),(253,258),(253,274),(253,278),(254,260),(254,262),(254,264),(254,278),(255,259),(255,261),(255,263),(255,278),(256,275),(256,279),(257,276),(257,279),(258,277),(258,279),(259,268),(259,280),(260,269),(260,280),(261,270),(261,280),(262,271),(262,280),(263,268),(263,270),(263,279),(264,269),(264,271),(264,279),(265,281),(266,281),(267,281),(268,281),(269,281),(270,281),(271,281),(272,275),(272,280),(273,276),(273,280),(274,277),(274,280),(275,281),(276,281),(277,281),(278,279),(278,280),(279,281),(280,281)],282)
=> ? = 1
[1,2,2,2] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,13),(1,26),(1,27),(1,47),(1,48),(1,49),(1,50),(1,51),(1,52),(1,53),(1,54),(2,18),(2,19),(2,34),(2,35),(2,43),(2,44),(2,45),(2,46),(2,54),(2,56),(3,16),(3,17),(3,32),(3,33),(3,39),(3,40),(3,41),(3,42),(3,53),(3,56),(4,21),(4,23),(4,31),(4,37),(4,40),(4,44),(4,48),(4,120),(4,121),(5,20),(5,22),(5,30),(5,36),(5,39),(5,43),(5,47),(5,119),(5,121),(6,20),(6,24),(6,28),(6,37),(6,41),(6,45),(6,49),(6,117),(6,122),(7,21),(7,25),(7,29),(7,36),(7,42),(7,46),(7,50),(7,118),(7,122),(8,15),(8,24),(8,25),(8,33),(8,35),(8,38),(8,52),(8,119),(8,120),(9,14),(9,22),(9,23),(9,32),(9,34),(9,38),(9,51),(9,117),(9,118),(10,16),(10,18),(10,26),(10,29),(10,30),(10,55),(10,117),(10,120),(11,17),(11,19),(11,27),(11,28),(11,31),(11,55),(11,118),(11,119),(12,13),(12,14),(12,15),(12,55),(12,56),(12,121),(12,122),(13,62),(13,63),(13,135),(13,136),(13,137),(13,161),(14,57),(14,62),(14,129),(14,178),(14,236),(15,57),(15,63),(15,130),(15,179),(15,237),(16,72),(16,98),(16,99),(16,170),(16,173),(16,211),(17,73),(17,97),(17,100),(17,171),(17,172),(17,211),(18,74),(18,102),(18,103),(18,174),(18,177),(18,211),(19,75),(19,101),(19,104),(19,175),(19,176),(19,211),(20,58),(20,60),(20,76),(20,166),(20,168),(20,212),(21,59),(21,61),(21,77),(21,167),(21,169),(21,212),(22,68),(22,89),(22,93),(22,129),(22,166),(22,209),(23,69),(23,90),(23,94),(23,129),(23,167),(23,210),(24,70),(24,91),(24,95),(24,130),(24,168),(24,210),(25,71),(25,92),(25,96),(25,130),(25,169),(25,209),(26,72),(26,74),(26,106),(26,107),(26,135),(26,162),(26,165),(27,73),(27,75),(27,105),(27,108),(27,135),(27,163),(27,164),(28,97),(28,101),(28,105),(28,116),(28,168),(28,236),(29,98),(29,102),(29,106),(29,115),(29,169),(29,236),(30,99),(30,103),(30,107),(30,115),(30,166),(30,237),(31,100),(31,104),(31,108),(31,116),(31,167),(31,237),(32,89),(32,90),(32,109),(32,113),(32,170),(32,171),(32,178),(33,91),(33,92),(33,110),(33,113),(33,172),(33,173),(33,179),(34,93),(34,94),(34,111),(34,114),(34,174),(34,175),(34,178),(35,95),(35,96),(35,112),(35,114),(35,176),(35,177),(35,179),(36,64),(36,66),(36,79),(36,115),(36,209),(36,212),(37,65),(37,67),(37,80),(37,116),(37,210),(37,212),(38,57),(38,78),(38,113),(38,114),(38,209),(38,210),(39,58),(39,64),(39,81),(39,89),(39,99),(39,172),(39,213),(40,59),(40,65),(40,82),(40,90),(40,100),(40,173),(40,213),(41,58),(41,65),(41,83),(41,91),(41,97),(41,170),(41,214),(42,59),(42,64),(42,84),(42,92),(42,98),(42,171),(42,214),(43,60),(43,66),(43,85),(43,93),(43,103),(43,176),(43,213),(44,61),(44,67),(44,86),(44,94),(44,104),(44,177),(44,213),(45,60),(45,67),(45,87),(45,95),(45,101),(45,174),(45,214),(46,61),(46,66),(46,88),(46,96),(46,102),(46,175),(46,214),(47,68),(47,76),(47,79),(47,81),(47,85),(47,107),(47,136),(47,164),(48,69),(48,77),(48,80),(48,82),(48,86),(48,108),(48,136),(48,165),(49,70),(49,76),(49,80),(49,83),(49,87),(49,105),(49,137),(49,162),(50,71),(50,77),(50,79),(50,84),(50,88),(50,106),(50,137),(50,163),(51,62),(51,68),(51,69),(51,78),(51,109),(51,111),(51,162),(51,163),(52,63),(52,70),(52,71),(52,78),(52,110),(52,112),(52,164),(52,165),(53,72),(53,73),(53,81),(53,82),(53,83),(53,84),(53,109),(53,110),(53,161),(54,74),(54,75),(54,85),(54,86),(54,87),(54,88),(54,111),(54,112),(54,161),(55,135),(55,211),(55,236),(55,237),(56,161),(56,178),(56,179),(56,211),(56,213),(56,214),(57,138),(57,180),(57,252),(58,157),(58,181),(58,183),(58,246),(59,158),(59,182),(59,184),(59,246),(60,159),(60,185),(60,187),(60,246),(61,160),(61,186),(61,188),(61,246),(62,138),(62,189),(62,203),(62,238),(63,138),(63,190),(63,204),(63,239),(64,123),(64,131),(64,224),(64,246),(65,124),(65,132),(65,225),(65,246),(66,125),(66,133),(66,226),(66,246),(67,126),(67,134),(67,227),(67,246),(68,147),(68,151),(68,199),(68,203),(68,234),(69,148),(69,152),(69,200),(69,203),(69,235),(70,149),(70,153),(70,201),(70,204),(70,235),(71,150),(71,154),(71,202),(71,204),(71,234),(72,140),(72,141),(72,191),(72,194),(72,233),(73,139),(73,142),(73,192),(73,193),(73,233),(74,144),(74,145),(74,195),(74,198),(74,233),(75,143),(75,146),(75,196),(75,197),(75,233),(76,157),(76,159),(76,199),(76,201),(76,230),(77,158),(77,160),(77,200),(77,202),(77,230),(78,138),(78,155),(78,156),(78,234),(78,235),(79,127),(79,131),(79,133),(79,230),(79,234),(80,128),(80,132),(80,134),(80,230),(80,235),(81,131),(81,141),(81,147),(81,157),(81,193),(81,231),(82,132),(82,142),(82,148),(82,158),(82,194),(82,231),(83,132),(83,139),(83,149),(83,157),(83,191),(83,232),(84,131),(84,140),(84,150),(84,158),(84,192),(84,232),(85,133),(85,145),(85,151),(85,159),(85,197),(85,231),(86,134),(86,146),(86,152),(86,160),(86,198),(86,231),(87,134),(87,143),(87,153),(87,159),(87,195),(87,232),(88,133),(88,144),(88,154),(88,160),(88,196),(88,232),(89,147),(89,181),(89,224),(89,228),(90,148),(90,182),(90,225),(90,228),(91,149),(91,183),(91,225),(91,229),(92,150),(92,184),(92,224),(92,229),(93,151),(93,185),(93,226),(93,228),(94,152),(94,186),(94,227),(94,228),(95,153),(95,187),(95,227),(95,229),(96,154),(96,188),(96,226),(96,229),(97,124),(97,139),(97,183),(97,247),(98,123),(98,140),(98,184),(98,247),(99,123),(99,141),(99,181),(99,248),(100,124),(100,142),(100,182),(100,248),(101,126),(101,143),(101,187),(101,247),(102,125),(102,144),(102,188),(102,247),(103,125),(103,145),(103,185),(103,248),(104,126),(104,146),(104,186),(104,248),(105,128),(105,139),(105,143),(105,201),(105,238),(106,127),(106,140),(106,144),(106,202),(106,238),(107,127),(107,141),(107,145),(107,199),(107,239),(108,128),(108,142),(108,146),(108,200),(108,239),(109,147),(109,148),(109,155),(109,189),(109,191),(109,192),(110,149),(110,150),(110,155),(110,190),(110,193),(110,194),(111,151),(111,152),(111,156),(111,189),(111,195),(111,196),(112,153),(112,154),(112,156),(112,190),(112,197),(112,198),(113,155),(113,180),(113,224),(113,225),(114,156),(114,180),(114,226),(114,227),(115,123),(115,125),(115,127),(115,252),(116,124),(116,126),(116,128),(116,252),(117,162),(117,166),(117,170),(117,174),(117,210),(117,236),(118,163),(118,167),(118,171),(118,175),(118,209),(118,236),(119,164),(119,168),(119,172),(119,176),(119,209),(119,237),(120,165),(120,169),(120,173),(120,177),(120,210),(120,237),(121,129),(121,136),(121,212),(121,213),(121,237),(122,130),(122,137),(122,212),(122,214),(122,236),(123,205),(123,254),(124,206),(124,254),(125,207),(125,254),(126,208),(126,254),(127,205),(127,207),(127,253),(128,206),(128,208),(128,253),(129,203),(129,228),(129,252),(130,204),(130,229),(130,252),(131,205),(131,242),(131,249),(132,206),(132,243),(132,249),(133,207),(133,244),(133,249),(134,208),(134,245),(134,249),(135,233),(135,238),(135,239),(136,203),(136,230),(136,231),(136,239),(137,204),(137,230),(137,232),(137,238),(138,215),(138,253),(139,206),(139,218),(139,250),(140,205),(140,219),(140,250),(141,205),(141,216),(141,251),(142,206),(142,217),(142,251),(143,208),(143,222),(143,250),(144,207),(144,223),(144,250),(145,207),(145,220),(145,251),(146,208),(146,221),(146,251),(147,216),(147,240),(147,242),(148,217),(148,240),(148,243),(149,218),(149,241),(149,243),(150,219),(150,241),(150,242),(151,220),(151,240),(151,244),(152,221),(152,240),(152,245),(153,222),(153,241),(153,245),(154,223),(154,241),(154,244),(155,215),(155,242),(155,243),(156,215),(156,244),(156,245),(157,216),(157,218),(157,249),(158,217),(158,219),(158,249),(159,220),(159,222),(159,249),(160,221),(160,223),(160,249),(161,189),(161,190),(161,231),(161,232),(161,233),(162,191),(162,195),(162,199),(162,235),(162,238),(163,192),(163,196),(163,200),(163,234),(163,238),(164,193),(164,197),(164,201),(164,234),(164,239),(165,194),(165,198),(165,202),(165,235),(165,239),(166,181),(166,185),(166,199),(166,252),(167,182),(167,186),(167,200),(167,252),(168,183),(168,187),(168,201),(168,252),(169,184),(169,188),(169,202),(169,252),(170,181),(170,191),(170,225),(170,247),(171,182),(171,192),(171,224),(171,247),(172,183),(172,193),(172,224),(172,248),(173,184),(173,194),(173,225),(173,248),(174,185),(174,195),(174,227),(174,247),(175,186),(175,196),(175,226),(175,247),(176,187),(176,197),(176,226),(176,248),(177,188),(177,198),(177,227),(177,248),(178,180),(178,189),(178,228),(178,247),(179,180),(179,190),(179,229),(179,248),(180,215),(180,254),(181,216),(181,254),(182,217),(182,254),(183,218),(183,254),(184,219),(184,254),(185,220),(185,254),(186,221),(186,254),(187,222),(187,254),(188,223),(188,254),(189,215),(189,240),(189,250),(190,215),(190,241),(190,251),(191,216),(191,243),(191,250),(192,217),(192,242),(192,250),(193,218),(193,242),(193,251),(194,219),(194,243),(194,251),(195,220),(195,245),(195,250),(196,221),(196,244),(196,250),(197,222),(197,244),(197,251),(198,223),(198,245),(198,251),(199,216),(199,220),(199,253),(200,217),(200,221),(200,253),(201,218),(201,222),(201,253),(202,219),(202,223),(202,253),(203,240),(203,253),(204,241),(204,253),(205,255),(206,255),(207,255),(208,255),(209,224),(209,226),(209,234),(209,252),(210,225),(210,227),(210,235),(210,252),(211,233),(211,247),(211,248),(212,230),(212,246),(212,252),(213,228),(213,231),(213,246),(213,248),(214,229),(214,232),(214,246),(214,247),(215,255),(216,255),(217,255),(218,255),(219,255),(220,255),(221,255),(222,255),(223,255),(224,242),(224,254),(225,243),(225,254),(226,244),(226,254),(227,245),(227,254),(228,240),(228,254),(229,241),(229,254),(230,249),(230,253),(231,240),(231,249),(231,251),(232,241),(232,249),(232,250),(233,250),(233,251),(234,242),(234,244),(234,253),(235,243),(235,245),(235,253),(236,238),(236,247),(236,252),(237,239),(237,248),(237,252),(238,250),(238,253),(239,251),(239,253),(240,255),(241,255),(242,255),(243,255),(244,255),(245,255),(246,249),(246,254),(247,250),(247,254),(248,251),(248,254),(249,255),(250,255),(251,255),(252,253),(252,254),(253,255),(254,255)],256)
=> ? = 1
[1,2,3,1] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,12),(1,34),(1,35),(1,36),(1,37),(1,38),(1,45),(1,46),(1,47),(1,48),(2,15),(2,19),(2,23),(2,27),(2,31),(2,43),(2,44),(2,46),(2,59),(3,14),(3,18),(3,22),(3,26),(3,30),(3,41),(3,42),(3,45),(3,59),(4,17),(4,21),(4,25),(4,29),(4,33),(4,42),(4,44),(4,48),(4,58),(5,16),(5,20),(5,24),(5,28),(5,32),(5,41),(5,43),(5,47),(5,58),(6,13),(6,14),(6,15),(6,16),(6,17),(6,38),(6,108),(6,109),(7,22),(7,23),(7,24),(7,25),(7,35),(7,40),(7,107),(7,109),(8,18),(8,19),(8,20),(8,21),(8,34),(8,40),(8,106),(8,108),(9,30),(9,31),(9,32),(9,33),(9,37),(9,39),(9,106),(9,109),(10,26),(10,27),(10,28),(10,29),(10,36),(10,39),(10,107),(10,108),(11,12),(11,13),(11,58),(11,59),(11,106),(11,107),(12,49),(12,130),(12,131),(12,132),(12,133),(13,49),(13,128),(13,129),(13,201),(14,50),(14,51),(14,54),(14,128),(14,154),(14,158),(15,52),(15,53),(15,55),(15,128),(15,155),(15,159),(16,50),(16,52),(16,56),(16,129),(16,156),(16,160),(17,51),(17,53),(17,57),(17,129),(17,157),(17,161),(18,66),(18,82),(18,83),(18,98),(18,154),(18,197),(19,67),(19,84),(19,85),(19,99),(19,155),(19,197),(20,68),(20,82),(20,84),(20,100),(20,156),(20,198),(21,69),(21,83),(21,85),(21,101),(21,157),(21,198),(22,70),(22,86),(22,87),(22,98),(22,158),(22,199),(23,71),(23,88),(23,89),(23,99),(23,159),(23,199),(24,72),(24,86),(24,88),(24,100),(24,160),(24,200),(25,73),(25,87),(25,89),(25,101),(25,161),(25,200),(26,74),(26,90),(26,91),(26,102),(26,154),(26,199),(27,75),(27,92),(27,93),(27,103),(27,155),(27,199),(28,76),(28,90),(28,92),(28,104),(28,156),(28,200),(29,77),(29,91),(29,93),(29,105),(29,157),(29,200),(30,78),(30,94),(30,95),(30,102),(30,158),(30,197),(31,79),(31,96),(31,97),(31,103),(31,159),(31,197),(32,80),(32,94),(32,96),(32,104),(32,160),(32,198),(33,81),(33,95),(33,97),(33,105),(33,161),(33,198),(34,60),(34,66),(34,67),(34,68),(34,69),(34,126),(34,130),(35,60),(35,70),(35,71),(35,72),(35,73),(35,127),(35,131),(36,61),(36,74),(36,75),(36,76),(36,77),(36,126),(36,131),(37,61),(37,78),(37,79),(37,80),(37,81),(37,127),(37,130),(38,49),(38,54),(38,55),(38,56),(38,57),(38,126),(38,127),(39,61),(39,102),(39,103),(39,104),(39,105),(39,201),(40,60),(40,98),(40,99),(40,100),(40,101),(40,201),(41,50),(41,62),(41,82),(41,86),(41,90),(41,94),(41,188),(42,51),(42,63),(42,83),(42,87),(42,91),(42,95),(42,188),(43,52),(43,64),(43,84),(43,88),(43,92),(43,96),(43,188),(44,53),(44,65),(44,85),(44,89),(44,93),(44,97),(44,188),(45,54),(45,62),(45,63),(45,66),(45,70),(45,74),(45,78),(45,132),(46,55),(46,64),(46,65),(46,67),(46,71),(46,75),(46,79),(46,132),(47,56),(47,62),(47,64),(47,68),(47,72),(47,76),(47,80),(47,133),(48,57),(48,63),(48,65),(48,69),(48,73),(48,77),(48,81),(48,133),(49,178),(49,179),(49,208),(50,150),(50,162),(50,166),(50,203),(51,151),(51,163),(51,167),(51,203),(52,152),(52,164),(52,168),(52,203),(53,153),(53,165),(53,169),(53,203),(54,150),(54,151),(54,170),(54,174),(54,178),(55,152),(55,153),(55,171),(55,175),(55,178),(56,150),(56,152),(56,172),(56,176),(56,179),(57,151),(57,153),(57,173),(57,177),(57,179),(58,129),(58,133),(58,188),(58,198),(58,200),(59,128),(59,132),(59,188),(59,197),(59,199),(60,118),(60,119),(60,120),(60,121),(60,208),(61,122),(61,123),(61,124),(61,125),(61,208),(62,134),(62,138),(62,142),(62,146),(62,150),(62,202),(63,135),(63,139),(63,143),(63,147),(63,151),(63,202),(64,136),(64,140),(64,144),(64,148),(64,152),(64,202),(65,137),(65,141),(65,145),(65,149),(65,153),(65,202),(66,118),(66,134),(66,135),(66,170),(66,204),(67,119),(67,136),(67,137),(67,171),(67,204),(68,120),(68,134),(68,136),(68,172),(68,205),(69,121),(69,135),(69,137),(69,173),(69,205),(70,118),(70,138),(70,139),(70,174),(70,206),(71,119),(71,140),(71,141),(71,175),(71,206),(72,120),(72,138),(72,140),(72,176),(72,207),(73,121),(73,139),(73,141),(73,177),(73,207),(74,122),(74,142),(74,143),(74,170),(74,206),(75,123),(75,144),(75,145),(75,171),(75,206),(76,124),(76,142),(76,144),(76,172),(76,207),(77,125),(77,143),(77,145),(77,173),(77,207),(78,122),(78,146),(78,147),(78,174),(78,204),(79,123),(79,148),(79,149),(79,175),(79,204),(80,124),(80,146),(80,148),(80,176),(80,205),(81,125),(81,147),(81,149),(81,177),(81,205),(82,110),(82,134),(82,162),(82,210),(83,111),(83,135),(83,163),(83,210),(84,112),(84,136),(84,164),(84,210),(85,113),(85,137),(85,165),(85,210),(86,110),(86,138),(86,166),(86,211),(87,111),(87,139),(87,167),(87,211),(88,112),(88,140),(88,168),(88,211),(89,113),(89,141),(89,169),(89,211),(90,114),(90,142),(90,162),(90,211),(91,115),(91,143),(91,163),(91,211),(92,116),(92,144),(92,164),(92,211),(93,117),(93,145),(93,165),(93,211),(94,114),(94,146),(94,166),(94,210),(95,115),(95,147),(95,167),(95,210),(96,116),(96,148),(96,168),(96,210),(97,117),(97,149),(97,169),(97,210),(98,110),(98,111),(98,118),(98,212),(99,112),(99,113),(99,119),(99,212),(100,110),(100,112),(100,120),(100,213),(101,111),(101,113),(101,121),(101,213),(102,114),(102,115),(102,122),(102,212),(103,116),(103,117),(103,123),(103,212),(104,114),(104,116),(104,124),(104,213),(105,115),(105,117),(105,125),(105,213),(106,130),(106,197),(106,198),(106,201),(107,131),(107,199),(107,200),(107,201),(108,126),(108,154),(108,155),(108,156),(108,157),(108,201),(109,127),(109,158),(109,159),(109,160),(109,161),(109,201),(110,180),(110,218),(111,181),(111,218),(112,182),(112,218),(113,183),(113,218),(114,184),(114,218),(115,185),(115,218),(116,186),(116,218),(117,187),(117,218),(118,180),(118,181),(118,216),(119,182),(119,183),(119,216),(120,180),(120,182),(120,217),(121,181),(121,183),(121,217),(122,184),(122,185),(122,216),(123,186),(123,187),(123,216),(124,184),(124,186),(124,217),(125,185),(125,187),(125,217),(126,170),(126,171),(126,172),(126,173),(126,208),(127,174),(127,175),(127,176),(127,177),(127,208),(128,178),(128,203),(128,212),(129,179),(129,203),(129,213),(130,204),(130,205),(130,208),(131,206),(131,207),(131,208),(132,178),(132,202),(132,204),(132,206),(133,179),(133,202),(133,205),(133,207),(134,180),(134,189),(134,214),(135,181),(135,190),(135,214),(136,182),(136,191),(136,214),(137,183),(137,192),(137,214),(138,180),(138,193),(138,215),(139,181),(139,194),(139,215),(140,182),(140,195),(140,215),(141,183),(141,196),(141,215),(142,184),(142,189),(142,215),(143,185),(143,190),(143,215),(144,186),(144,191),(144,215),(145,187),(145,192),(145,215),(146,184),(146,193),(146,214),(147,185),(147,194),(147,214),(148,186),(148,195),(148,214),(149,187),(149,196),(149,214),(150,189),(150,193),(150,209),(151,190),(151,194),(151,209),(152,191),(152,195),(152,209),(153,192),(153,196),(153,209),(154,162),(154,163),(154,170),(154,212),(155,164),(155,165),(155,171),(155,212),(156,162),(156,164),(156,172),(156,213),(157,163),(157,165),(157,173),(157,213),(158,166),(158,167),(158,174),(158,212),(159,168),(159,169),(159,175),(159,212),(160,166),(160,168),(160,176),(160,213),(161,167),(161,169),(161,177),(161,213),(162,189),(162,218),(163,190),(163,218),(164,191),(164,218),(165,192),(165,218),(166,193),(166,218),(167,194),(167,218),(168,195),(168,218),(169,196),(169,218),(170,189),(170,190),(170,216),(171,191),(171,192),(171,216),(172,189),(172,191),(172,217),(173,190),(173,192),(173,217),(174,193),(174,194),(174,216),(175,195),(175,196),(175,216),(176,193),(176,195),(176,217),(177,194),(177,196),(177,217),(178,209),(178,216),(179,209),(179,217),(180,219),(181,219),(182,219),(183,219),(184,219),(185,219),(186,219),(187,219),(188,202),(188,203),(188,210),(188,211),(189,219),(190,219),(191,219),(192,219),(193,219),(194,219),(195,219),(196,219),(197,204),(197,210),(197,212),(198,205),(198,210),(198,213),(199,206),(199,211),(199,212),(200,207),(200,211),(200,213),(201,208),(201,212),(201,213),(202,209),(202,214),(202,215),(203,209),(203,218),(204,214),(204,216),(205,214),(205,217),(206,215),(206,216),(207,215),(207,217),(208,216),(208,217),(209,219),(210,214),(210,218),(211,215),(211,218),(212,216),(212,218),(213,217),(213,218),(214,219),(215,219),(216,219),(217,219),(218,219)],220)
=> ? = 2
[1,2,4] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,11),(1,36),(1,37),(1,38),(1,39),(1,40),(1,41),(1,42),(1,43),(2,13),(2,17),(2,22),(2,23),(2,25),(2,31),(2,37),(2,103),(3,12),(3,16),(3,20),(3,21),(3,24),(3,30),(3,36),(3,103),(4,15),(4,19),(4,21),(4,23),(4,27),(4,33),(4,39),(4,102),(5,14),(5,18),(5,20),(5,22),(5,26),(5,32),(5,38),(5,102),(6,16),(6,17),(6,18),(6,19),(6,29),(6,35),(6,41),(6,101),(7,12),(7,13),(7,14),(7,15),(7,28),(7,34),(7,40),(7,101),(8,30),(8,31),(8,32),(8,33),(8,34),(8,35),(8,43),(8,100),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(9,42),(9,100),(10,11),(10,100),(10,101),(10,102),(10,103),(11,104),(11,105),(11,106),(11,107),(12,44),(12,68),(12,80),(12,92),(12,93),(12,173),(13,45),(13,69),(13,81),(13,94),(13,95),(13,173),(14,46),(14,70),(14,82),(14,92),(14,94),(14,174),(15,47),(15,71),(15,83),(15,93),(15,95),(15,174),(16,48),(16,72),(16,84),(16,96),(16,97),(16,173),(17,49),(17,73),(17,85),(17,98),(17,99),(17,173),(18,50),(18,74),(18,86),(18,96),(18,98),(18,174),(19,51),(19,75),(19,87),(19,97),(19,99),(19,174),(20,52),(20,76),(20,88),(20,92),(20,96),(20,172),(21,53),(21,77),(21,89),(21,93),(21,97),(21,172),(22,54),(22,78),(22,90),(22,94),(22,98),(22,172),(23,55),(23,79),(23,91),(23,95),(23,99),(23,172),(24,56),(24,68),(24,72),(24,76),(24,77),(24,175),(25,57),(25,69),(25,73),(25,78),(25,79),(25,175),(26,58),(26,70),(26,74),(26,76),(26,78),(26,176),(27,59),(27,71),(27,75),(27,77),(27,79),(27,176),(28,60),(28,68),(28,69),(28,70),(28,71),(28,177),(29,61),(29,72),(29,73),(29,74),(29,75),(29,177),(30,62),(30,80),(30,84),(30,88),(30,89),(30,175),(31,63),(31,81),(31,85),(31,90),(31,91),(31,175),(32,64),(32,82),(32,86),(32,88),(32,90),(32,176),(33,65),(33,83),(33,87),(33,89),(33,91),(33,176),(34,66),(34,80),(34,81),(34,82),(34,83),(34,177),(35,67),(35,84),(35,85),(35,86),(35,87),(35,177),(36,44),(36,48),(36,52),(36,53),(36,56),(36,62),(36,104),(37,45),(37,49),(37,54),(37,55),(37,57),(37,63),(37,104),(38,46),(38,50),(38,52),(38,54),(38,58),(38,64),(38,105),(39,47),(39,51),(39,53),(39,55),(39,59),(39,65),(39,105),(40,44),(40,45),(40,46),(40,47),(40,60),(40,66),(40,106),(41,48),(41,49),(41,50),(41,51),(41,61),(41,67),(41,106),(42,56),(42,57),(42,58),(42,59),(42,60),(42,61),(42,107),(43,62),(43,63),(43,64),(43,65),(43,66),(43,67),(43,107),(44,124),(44,136),(44,148),(44,149),(44,179),(45,125),(45,137),(45,150),(45,151),(45,179),(46,126),(46,138),(46,148),(46,150),(46,180),(47,127),(47,139),(47,149),(47,151),(47,180),(48,128),(48,140),(48,152),(48,153),(48,179),(49,129),(49,141),(49,154),(49,155),(49,179),(50,130),(50,142),(50,152),(50,154),(50,180),(51,131),(51,143),(51,153),(51,155),(51,180),(52,132),(52,144),(52,148),(52,152),(52,178),(53,133),(53,145),(53,149),(53,153),(53,178),(54,134),(54,146),(54,150),(54,154),(54,178),(55,135),(55,147),(55,151),(55,155),(55,178),(56,124),(56,128),(56,132),(56,133),(56,181),(57,125),(57,129),(57,134),(57,135),(57,181),(58,126),(58,130),(58,132),(58,134),(58,182),(59,127),(59,131),(59,133),(59,135),(59,182),(60,124),(60,125),(60,126),(60,127),(60,183),(61,128),(61,129),(61,130),(61,131),(61,183),(62,136),(62,140),(62,144),(62,145),(62,181),(63,137),(63,141),(63,146),(63,147),(63,181),(64,138),(64,142),(64,144),(64,146),(64,182),(65,139),(65,143),(65,145),(65,147),(65,182),(66,136),(66,137),(66,138),(66,139),(66,183),(67,140),(67,141),(67,142),(67,143),(67,183),(68,108),(68,109),(68,124),(68,185),(69,110),(69,111),(69,125),(69,185),(70,108),(70,110),(70,126),(70,186),(71,109),(71,111),(71,127),(71,186),(72,112),(72,113),(72,128),(72,185),(73,114),(73,115),(73,129),(73,185),(74,112),(74,114),(74,130),(74,186),(75,113),(75,115),(75,131),(75,186),(76,108),(76,112),(76,132),(76,187),(77,109),(77,113),(77,133),(77,187),(78,110),(78,114),(78,134),(78,187),(79,111),(79,115),(79,135),(79,187),(80,116),(80,117),(80,136),(80,185),(81,118),(81,119),(81,137),(81,185),(82,116),(82,118),(82,138),(82,186),(83,117),(83,119),(83,139),(83,186),(84,120),(84,121),(84,140),(84,185),(85,122),(85,123),(85,141),(85,185),(86,120),(86,122),(86,142),(86,186),(87,121),(87,123),(87,143),(87,186),(88,116),(88,120),(88,144),(88,187),(89,117),(89,121),(89,145),(89,187),(90,118),(90,122),(90,146),(90,187),(91,119),(91,123),(91,147),(91,187),(92,108),(92,116),(92,148),(92,184),(93,109),(93,117),(93,149),(93,184),(94,110),(94,118),(94,150),(94,184),(95,111),(95,119),(95,151),(95,184),(96,112),(96,120),(96,152),(96,184),(97,113),(97,121),(97,153),(97,184),(98,114),(98,122),(98,154),(98,184),(99,115),(99,123),(99,155),(99,184),(100,107),(100,175),(100,176),(100,177),(101,106),(101,173),(101,174),(101,177),(102,105),(102,172),(102,174),(102,176),(103,104),(103,172),(103,173),(103,175),(104,178),(104,179),(104,181),(105,178),(105,180),(105,182),(106,179),(106,180),(106,183),(107,181),(107,182),(107,183),(108,156),(108,192),(109,157),(109,192),(110,158),(110,192),(111,159),(111,192),(112,160),(112,192),(113,161),(113,192),(114,162),(114,192),(115,163),(115,192),(116,164),(116,192),(117,165),(117,192),(118,166),(118,192),(119,167),(119,192),(120,168),(120,192),(121,169),(121,192),(122,170),(122,192),(123,171),(123,192),(124,156),(124,157),(124,189),(125,158),(125,159),(125,189),(126,156),(126,158),(126,190),(127,157),(127,159),(127,190),(128,160),(128,161),(128,189),(129,162),(129,163),(129,189),(130,160),(130,162),(130,190),(131,161),(131,163),(131,190),(132,156),(132,160),(132,191),(133,157),(133,161),(133,191),(134,158),(134,162),(134,191),(135,159),(135,163),(135,191),(136,164),(136,165),(136,189),(137,166),(137,167),(137,189),(138,164),(138,166),(138,190),(139,165),(139,167),(139,190),(140,168),(140,169),(140,189),(141,170),(141,171),(141,189),(142,168),(142,170),(142,190),(143,169),(143,171),(143,190),(144,164),(144,168),(144,191),(145,165),(145,169),(145,191),(146,166),(146,170),(146,191),(147,167),(147,171),(147,191),(148,156),(148,164),(148,188),(149,157),(149,165),(149,188),(150,158),(150,166),(150,188),(151,159),(151,167),(151,188),(152,160),(152,168),(152,188),(153,161),(153,169),(153,188),(154,162),(154,170),(154,188),(155,163),(155,171),(155,188),(156,193),(157,193),(158,193),(159,193),(160,193),(161,193),(162,193),(163,193),(164,193),(165,193),(166,193),(167,193),(168,193),(169,193),(170,193),(171,193),(172,178),(172,184),(172,187),(173,179),(173,184),(173,185),(174,180),(174,184),(174,186),(175,181),(175,185),(175,187),(176,182),(176,186),(176,187),(177,183),(177,185),(177,186),(178,188),(178,191),(179,188),(179,189),(180,188),(180,190),(181,189),(181,191),(182,190),(182,191),(183,189),(183,190),(184,188),(184,192),(185,189),(185,192),(186,190),(186,192),(187,191),(187,192),(188,193),(189,193),(190,193),(191,193),(192,193)],194)
=> ? = 1
[1,3,1,1,1] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,38),(1,39),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(1,47),(1,48),(2,28),(2,29),(2,30),(2,31),(2,32),(2,33),(2,34),(2,35),(2,36),(2,37),(2,48),(3,15),(3,16),(3,22),(3,29),(3,39),(3,91),(3,92),(3,94),(4,13),(4,14),(4,21),(4,28),(4,38),(4,89),(4,90),(4,94),(5,18),(5,20),(5,24),(5,31),(5,41),(5,90),(5,92),(5,93),(6,17),(6,19),(6,23),(6,30),(6,40),(6,89),(6,91),(6,93),(7,13),(7,17),(7,26),(7,32),(7,42),(7,92),(7,95),(7,97),(8,14),(8,18),(8,27),(8,33),(8,43),(8,91),(8,95),(8,98),(9,15),(9,19),(9,27),(9,34),(9,44),(9,90),(9,96),(9,97),(10,16),(10,20),(10,26),(10,35),(10,45),(10,89),(10,96),(10,98),(11,23),(11,24),(11,25),(11,37),(11,47),(11,94),(11,97),(11,98),(12,21),(12,22),(12,25),(12,36),(12,46),(12,93),(12,95),(12,96),(13,49),(13,64),(13,114),(13,118),(13,188),(14,50),(14,65),(14,114),(14,119),(14,187),(15,51),(15,66),(15,115),(15,120),(15,188),(16,52),(16,67),(16,115),(16,121),(16,187),(17,53),(17,68),(17,116),(17,118),(17,186),(18,54),(18,69),(18,117),(18,119),(18,186),(19,55),(19,70),(19,116),(19,120),(19,185),(20,56),(20,71),(20,117),(20,121),(20,185),(21,57),(21,72),(21,114),(21,122),(21,185),(22,58),(22,73),(22,115),(22,122),(22,186),(23,59),(23,74),(23,116),(23,123),(23,187),(24,60),(24,75),(24,117),(24,123),(24,188),(25,63),(25,78),(25,122),(25,123),(25,184),(26,61),(26,76),(26,118),(26,121),(26,184),(27,62),(27,77),(27,119),(27,120),(27,184),(28,49),(28,50),(28,57),(28,79),(28,124),(28,125),(28,129),(29,51),(29,52),(29,58),(29,80),(29,126),(29,127),(29,129),(30,53),(30,55),(30,59),(30,81),(30,124),(30,126),(30,128),(31,54),(31,56),(31,60),(31,82),(31,125),(31,127),(31,128),(32,49),(32,53),(32,61),(32,83),(32,127),(32,130),(32,132),(33,50),(33,54),(33,62),(33,84),(33,126),(33,130),(33,133),(34,51),(34,55),(34,62),(34,85),(34,125),(34,131),(34,132),(35,52),(35,56),(35,61),(35,86),(35,124),(35,131),(35,133),(36,57),(36,58),(36,63),(36,87),(36,128),(36,130),(36,131),(37,59),(37,60),(37,63),(37,88),(37,129),(37,132),(37,133),(38,64),(38,65),(38,72),(38,79),(38,134),(38,135),(38,139),(39,66),(39,67),(39,73),(39,80),(39,136),(39,137),(39,139),(40,68),(40,70),(40,74),(40,81),(40,134),(40,136),(40,138),(41,69),(41,71),(41,75),(41,82),(41,135),(41,137),(41,138),(42,64),(42,68),(42,76),(42,83),(42,137),(42,140),(42,142),(43,65),(43,69),(43,77),(43,84),(43,136),(43,140),(43,143),(44,66),(44,70),(44,77),(44,85),(44,135),(44,141),(44,142),(45,67),(45,71),(45,76),(45,86),(45,134),(45,141),(45,143),(46,72),(46,73),(46,78),(46,87),(46,138),(46,140),(46,141),(47,74),(47,75),(47,78),(47,88),(47,139),(47,142),(47,143),(48,79),(48,80),(48,81),(48,82),(48,83),(48,84),(48,85),(48,86),(48,87),(48,88),(49,99),(49,154),(49,158),(49,192),(50,100),(50,154),(50,159),(50,191),(51,101),(51,155),(51,160),(51,192),(52,102),(52,155),(52,161),(52,191),(53,103),(53,156),(53,158),(53,190),(54,104),(54,157),(54,159),(54,190),(55,105),(55,156),(55,160),(55,189),(56,106),(56,157),(56,161),(56,189),(57,107),(57,154),(57,162),(57,189),(58,108),(58,155),(58,162),(58,190),(59,109),(59,156),(59,163),(59,191),(60,110),(60,157),(60,163),(60,192),(61,111),(61,158),(61,161),(61,193),(62,112),(62,159),(62,160),(62,193),(63,113),(63,162),(63,163),(63,193),(64,99),(64,164),(64,168),(64,197),(65,100),(65,164),(65,169),(65,196),(66,101),(66,165),(66,170),(66,197),(67,102),(67,165),(67,171),(67,196),(68,103),(68,166),(68,168),(68,195),(69,104),(69,167),(69,169),(69,195),(70,105),(70,166),(70,170),(70,194),(71,106),(71,167),(71,171),(71,194),(72,107),(72,164),(72,172),(72,194),(73,108),(73,165),(73,172),(73,195),(74,109),(74,166),(74,173),(74,196),(75,110),(75,167),(75,173),(75,197),(76,111),(76,168),(76,171),(76,198),(77,112),(77,169),(77,170),(77,198),(78,113),(78,172),(78,173),(78,198),(79,99),(79,100),(79,107),(79,144),(79,145),(79,149),(80,101),(80,102),(80,108),(80,146),(80,147),(80,149),(81,103),(81,105),(81,109),(81,144),(81,146),(81,148),(82,104),(82,106),(82,110),(82,145),(82,147),(82,148),(83,99),(83,103),(83,111),(83,147),(83,150),(83,152),(84,100),(84,104),(84,112),(84,146),(84,150),(84,153),(85,101),(85,105),(85,112),(85,145),(85,151),(85,152),(86,102),(86,106),(86,111),(86,144),(86,151),(86,153),(87,107),(87,108),(87,113),(87,148),(87,150),(87,151),(88,109),(88,110),(88,113),(88,149),(88,152),(88,153),(89,118),(89,124),(89,134),(89,185),(89,187),(90,119),(90,125),(90,135),(90,185),(90,188),(91,120),(91,126),(91,136),(91,186),(91,187),(92,121),(92,127),(92,137),(92,186),(92,188),(93,123),(93,128),(93,138),(93,185),(93,186),(94,122),(94,129),(94,139),(94,187),(94,188),(95,114),(95,130),(95,140),(95,184),(95,186),(96,115),(96,131),(96,141),(96,184),(96,185),(97,116),(97,132),(97,142),(97,184),(97,188),(98,117),(98,133),(98,143),(98,184),(98,187),(99,174),(99,178),(99,202),(100,174),(100,179),(100,201),(101,175),(101,180),(101,202),(102,175),(102,181),(102,201),(103,176),(103,178),(103,200),(104,177),(104,179),(104,200),(105,176),(105,180),(105,199),(106,177),(106,181),(106,199),(107,174),(107,182),(107,199),(108,175),(108,182),(108,200),(109,176),(109,183),(109,201),(110,177),(110,183),(110,202),(111,178),(111,181),(111,203),(112,179),(112,180),(112,203),(113,182),(113,183),(113,203),(114,154),(114,164),(114,204),(115,155),(115,165),(115,204),(116,156),(116,166),(116,204),(117,157),(117,167),(117,204),(118,158),(118,168),(118,204),(119,159),(119,169),(119,204),(120,160),(120,170),(120,204),(121,161),(121,171),(121,204),(122,162),(122,172),(122,204),(123,163),(123,173),(123,204),(124,144),(124,158),(124,189),(124,191),(125,145),(125,159),(125,189),(125,192),(126,146),(126,160),(126,190),(126,191),(127,147),(127,161),(127,190),(127,192),(128,148),(128,163),(128,189),(128,190),(129,149),(129,162),(129,191),(129,192),(130,150),(130,154),(130,190),(130,193),(131,151),(131,155),(131,189),(131,193),(132,152),(132,156),(132,192),(132,193),(133,153),(133,157),(133,191),(133,193),(134,144),(134,168),(134,194),(134,196),(135,145),(135,169),(135,194),(135,197),(136,146),(136,170),(136,195),(136,196),(137,147),(137,171),(137,195),(137,197),(138,148),(138,173),(138,194),(138,195),(139,149),(139,172),(139,196),(139,197),(140,150),(140,164),(140,195),(140,198),(141,151),(141,165),(141,194),(141,198),(142,152),(142,166),(142,197),(142,198),(143,153),(143,167),(143,196),(143,198),(144,178),(144,199),(144,201),(145,179),(145,199),(145,202),(146,180),(146,200),(146,201),(147,181),(147,200),(147,202),(148,183),(148,199),(148,200),(149,182),(149,201),(149,202),(150,174),(150,200),(150,203),(151,175),(151,199),(151,203),(152,176),(152,202),(152,203),(153,177),(153,201),(153,203),(154,174),(154,205),(155,175),(155,205),(156,176),(156,205),(157,177),(157,205),(158,178),(158,205),(159,179),(159,205),(160,180),(160,205),(161,181),(161,205),(162,182),(162,205),(163,183),(163,205),(164,174),(164,206),(165,175),(165,206),(166,176),(166,206),(167,177),(167,206),(168,178),(168,206),(169,179),(169,206),(170,180),(170,206),(171,181),(171,206),(172,182),(172,206),(173,183),(173,206),(174,207),(175,207),(176,207),(177,207),(178,207),(179,207),(180,207),(181,207),(182,207),(183,207),(184,193),(184,198),(184,204),(185,189),(185,194),(185,204),(186,190),(186,195),(186,204),(187,191),(187,196),(187,204),(188,192),(188,197),(188,204),(189,199),(189,205),(190,200),(190,205),(191,201),(191,205),(192,202),(192,205),(193,203),(193,205),(194,199),(194,206),(195,200),(195,206),(196,201),(196,206),(197,202),(197,206),(198,203),(198,206),(199,207),(200,207),(201,207),(202,207),(203,207),(204,205),(204,206),(205,207),(206,207)],208)
=> ? = 1
[4,3] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[5,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[5,2] => [2,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[6,1] => [1,6] => ([(5,6)],7)
=> ([(0,1)],2)
=> 0
[7] => [7] => ([],7)
=> ([],1)
=> 0
Description
The number of join irreducibles minus the rank of a lattice.
A lattice is join-extremal, if this statistic is $0$.
Matching statistic: St001200
(load all 35 compositions to match this statistic)
(load all 35 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 67%
St001200: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 67%
Values
[1] => [1,0]
=> ? = 0 + 2
[1,1] => [1,0,1,0]
=> 2 = 0 + 2
[2] => [1,1,0,0]
=> ? = 0 + 2
[1,1,1] => [1,0,1,0,1,0]
=> 3 = 1 + 2
[1,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[2,1] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[3] => [1,1,1,0,0,0]
=> ? = 0 + 2
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 3 = 1 + 2
[1,3] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[4] => [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 1 + 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 1 + 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 1 + 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 1 + 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 0 + 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[5] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1 + 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1 + 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 1 + 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 2
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 2
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 2
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 2
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 1 + 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 2
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1 + 2
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 1 + 2
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 0 + 2
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 0 + 2
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 0 + 2
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 2
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 2
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 2
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 + 2
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 1 + 2
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1 + 2
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 + 2
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001651
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 67%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00266: Graphs —connected vertex partitions⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 0
[1,1] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2] => [2] => ([],2)
=> ([],1)
=> ? = 0
[1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[2,1] => [1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 0
[3] => [3] => ([],3)
=> ([],1)
=> ? = 0
[1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 1
[1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,1] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 0
[4] => [4] => ([],4)
=> ([],1)
=> ? = 0
[1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 1
[1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 1
[1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 1
[1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 1
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 1
[1,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
[2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 1
[2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[4,1] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 0
[5] => [5] => ([],5)
=> ([],1)
=> ? = 0
[1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,82),(1,83),(1,84),(1,85),(2,18),(2,19),(2,25),(2,30),(2,31),(2,37),(2,78),(2,79),(2,81),(2,83),(3,16),(3,17),(3,24),(3,28),(3,29),(3,36),(3,76),(3,77),(3,81),(3,82),(4,21),(4,23),(4,27),(4,33),(4,35),(4,39),(4,77),(4,79),(4,80),(4,85),(5,20),(5,22),(5,26),(5,32),(5,34),(5,38),(5,76),(5,78),(5,80),(5,84),(6,22),(6,23),(6,24),(6,46),(6,47),(6,54),(6,83),(6,86),(6,87),(6,91),(7,20),(7,21),(7,25),(7,48),(7,49),(7,55),(7,82),(7,88),(7,89),(7,91),(8,17),(8,19),(8,26),(8,50),(8,52),(8,56),(8,85),(8,86),(8,88),(8,90),(9,16),(9,18),(9,27),(9,51),(9,53),(9,57),(9,84),(9,87),(9,89),(9,90),(10,28),(10,32),(10,43),(10,48),(10,51),(10,59),(10,79),(10,86),(10,92),(10,94),(11,29),(11,33),(11,42),(11,49),(11,50),(11,60),(11,78),(11,87),(11,92),(11,95),(12,30),(12,34),(12,41),(12,46),(12,53),(12,60),(12,77),(12,88),(12,93),(12,94),(13,31),(13,35),(13,40),(13,47),(13,52),(13,59),(13,76),(13,89),(13,93),(13,95),(14,38),(14,39),(14,45),(14,56),(14,57),(14,58),(14,81),(14,91),(14,94),(14,95),(15,36),(15,37),(15,44),(15,54),(15,55),(15,58),(15,80),(15,90),(15,92),(15,93),(16,61),(16,107),(16,112),(16,126),(16,134),(16,170),(17,62),(17,106),(17,113),(17,127),(17,134),(17,171),(18,63),(18,109),(18,112),(18,129),(18,135),(18,172),(19,64),(19,108),(19,113),(19,128),(19,135),(19,173),(20,65),(20,104),(20,110),(20,132),(20,136),(20,170),(21,66),(21,105),(21,110),(21,133),(21,137),(21,171),(22,67),(22,102),(22,111),(22,130),(22,136),(22,172),(23,68),(23,103),(23,111),(23,131),(23,137),(23,173),(24,69),(24,102),(24,103),(24,126),(24,127),(24,175),(25,70),(25,104),(25,105),(25,128),(25,129),(25,175),(26,71),(26,106),(26,108),(26,130),(26,132),(26,174),(27,72),(27,107),(27,109),(27,131),(27,133),(27,174),(28,61),(28,96),(28,114),(28,127),(28,138),(28,169),(29,62),(29,97),(29,115),(29,126),(29,138),(29,168),(30,63),(30,98),(30,117),(30,128),(30,139),(30,169),(31,64),(31,99),(31,116),(31,129),(31,139),(31,168),(32,65),(32,96),(32,118),(32,130),(32,140),(32,167),(33,66),(33,97),(33,119),(33,131),(33,141),(33,167),(34,67),(34,98),(34,120),(34,132),(34,140),(34,166),(35,68),(35,99),(35,121),(35,133),(35,141),(35,166),(36,69),(36,100),(36,122),(36,134),(36,138),(36,166),(37,70),(37,100),(37,123),(37,135),(37,139),(37,167),(38,71),(38,101),(38,124),(38,136),(38,140),(38,168),(39,72),(39,101),(39,125),(39,137),(39,141),(39,169),(40,73),(40,116),(40,121),(40,142),(40,144),(40,170),(41,74),(41,117),(41,120),(41,142),(41,145),(41,171),(42,74),(42,115),(42,119),(42,143),(42,144),(42,172),(43,73),(43,114),(43,118),(43,143),(43,145),(43,173),(44,75),(44,122),(44,123),(44,142),(44,143),(44,174),(45,75),(45,124),(45,125),(45,144),(45,145),(45,175),(46,67),(46,103),(46,117),(46,148),(46,152),(46,178),(47,68),(47,102),(47,116),(47,149),(47,152),(47,179),(48,65),(48,105),(48,114),(48,146),(48,153),(48,178),(49,66),(49,104),(49,115),(49,147),(49,153),(49,179),(50,62),(50,108),(50,119),(50,147),(50,154),(50,176),(51,61),(51,109),(51,118),(51,146),(51,155),(51,176),(52,64),(52,106),(52,121),(52,149),(52,154),(52,177),(53,63),(53,107),(53,120),(53,148),(53,155),(53,177),(54,69),(54,111),(54,123),(54,150),(54,152),(54,176),(55,70),(55,110),(55,122),(55,150),(55,153),(55,177),(56,71),(56,113),(56,125),(56,151),(56,154),(56,178),(57,72),(57,112),(57,124),(57,151),(57,155),(57,179),(58,75),(58,100),(58,101),(58,150),(58,151),(58,180),(59,73),(59,96),(59,99),(59,146),(59,149),(59,180),(60,74),(60,97),(60,98),(60,147),(60,148),(60,180),(61,181),(61,189),(61,190),(62,181),(62,188),(62,191),(63,182),(63,189),(63,192),(64,182),(64,188),(64,193),(65,183),(65,187),(65,190),(66,184),(66,187),(66,191),(67,183),(67,186),(67,192),(68,184),(68,186),(68,193),(69,181),(69,186),(69,194),(70,182),(70,187),(70,194),(71,183),(71,188),(71,195),(72,184),(72,189),(72,195),(73,185),(73,190),(73,193),(74,185),(74,191),(74,192),(75,185),(75,194),(75,195),(76,96),(76,102),(76,106),(76,166),(76,168),(76,170),(77,97),(77,103),(77,107),(77,166),(77,169),(77,171),(78,98),(78,104),(78,108),(78,167),(78,168),(78,172),(79,99),(79,105),(79,109),(79,167),(79,169),(79,173),(80,101),(80,110),(80,111),(80,166),(80,167),(80,174),(81,100),(81,112),(81,113),(81,168),(81,169),(81,175),(82,114),(82,115),(82,122),(82,170),(82,171),(82,175),(83,116),(83,117),(83,123),(83,172),(83,173),(83,175),(84,118),(84,120),(84,124),(84,170),(84,172),(84,174),(85,119),(85,121),(85,125),(85,171),(85,173),(85,174),(86,127),(86,130),(86,149),(86,173),(86,176),(86,178),(87,126),(87,131),(87,148),(87,172),(87,176),(87,179),(88,128),(88,132),(88,147),(88,171),(88,177),(88,178),(89,129),(89,133),(89,146),(89,170),(89,177),(89,179),(90,134),(90,135),(90,151),(90,174),(90,176),(90,177),(91,136),(91,137),(91,150),(91,175),(91,178),(91,179),(92,138),(92,143),(92,153),(92,167),(92,176),(92,180),(93,139),(93,142),(93,152),(93,166),(93,177),(93,180),(94,140),(94,145),(94,155),(94,169),(94,178),(94,180),(95,141),(95,144),(95,154),(95,168),(95,179),(95,180),(96,156),(96,190),(96,197),(97,157),(97,191),(97,197),(98,158),(98,192),(98,197),(99,159),(99,193),(99,197),(100,160),(100,194),(100,197),(101,161),(101,195),(101,197),(102,156),(102,186),(102,200),(103,157),(103,186),(103,201),(104,158),(104,187),(104,200),(105,159),(105,187),(105,201),(106,156),(106,188),(106,198),(107,157),(107,189),(107,198),(108,158),(108,188),(108,199),(109,159),(109,189),(109,199),(110,161),(110,187),(110,198),(111,161),(111,186),(111,199),(112,160),(112,189),(112,200),(113,160),(113,188),(113,201),(114,162),(114,190),(114,201),(115,162),(115,191),(115,200),(116,163),(116,193),(116,200),(117,163),(117,192),(117,201),(118,164),(118,190),(118,199),(119,165),(119,191),(119,199),(120,164),(120,192),(120,198),(121,165),(121,193),(121,198),(122,162),(122,194),(122,198),(123,163),(123,194),(123,199),(124,164),(124,195),(124,200),(125,165),(125,195),(125,201),(126,157),(126,181),(126,200),(127,156),(127,181),(127,201),(128,158),(128,182),(128,201),(129,159),(129,182),(129,200),(130,156),(130,183),(130,199),(131,157),(131,184),(131,199),(132,158),(132,183),(132,198),(133,159),(133,184),(133,198),(134,160),(134,181),(134,198),(135,160),(135,182),(135,199),(136,161),(136,183),(136,200),(137,161),(137,184),(137,201),(138,162),(138,181),(138,197),(139,163),(139,182),(139,197),(140,164),(140,183),(140,197),(141,165),(141,184),(141,197),(142,163),(142,185),(142,198),(143,162),(143,185),(143,199),(144,165),(144,185),(144,200),(145,164),(145,185),(145,201),(146,159),(146,190),(146,196),(147,158),(147,191),(147,196),(148,157),(148,192),(148,196),(149,156),(149,193),(149,196),(150,161),(150,194),(150,196),(151,160),(151,195),(151,196),(152,163),(152,186),(152,196),(153,162),(153,187),(153,196),(154,165),(154,188),(154,196),(155,164),(155,189),(155,196),(156,202),(157,202),(158,202),(159,202),(160,202),(161,202),(162,202),(163,202),(164,202),(165,202),(166,186),(166,197),(166,198),(167,187),(167,197),(167,199),(168,188),(168,197),(168,200),(169,189),(169,197),(169,201),(170,190),(170,198),(170,200),(171,191),(171,198),(171,201),(172,192),(172,199),(172,200),(173,193),(173,199),(173,201),(174,195),(174,198),(174,199),(175,194),(175,200),(175,201),(176,181),(176,196),(176,199),(177,182),(177,196),(177,198),(178,183),(178,196),(178,201),(179,184),(179,196),(179,200),(180,185),(180,196),(180,197),(181,202),(182,202),(183,202),(184,202),(185,202),(186,202),(187,202),(188,202),(189,202),(190,202),(191,202),(192,202),(193,202),(194,202),(195,202),(196,202),(197,202),(198,202),(199,202),(200,202),(201,202)],203)
=> ? = 1
[1,1,1,1,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 1
[1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,25),(1,30),(1,31),(1,36),(1,37),(1,40),(1,43),(1,46),(1,64),(1,65),(2,24),(2,27),(2,29),(2,33),(2,35),(2,39),(2,42),(2,45),(2,63),(2,65),(3,23),(3,26),(3,28),(3,32),(3,34),(3,38),(3,41),(3,44),(3,63),(3,64),(4,20),(4,21),(4,22),(4,23),(4,24),(4,25),(4,90),(4,91),(4,92),(5,16),(5,28),(5,29),(5,43),(5,47),(5,48),(5,84),(5,85),(5,90),(6,14),(6,26),(6,30),(6,42),(6,49),(6,51),(6,84),(6,86),(6,91),(7,15),(7,27),(7,31),(7,41),(7,50),(7,52),(7,85),(7,86),(7,92),(8,19),(8,34),(8,35),(8,46),(8,49),(8,50),(8,87),(8,88),(8,90),(9,17),(9,32),(9,36),(9,45),(9,47),(9,52),(9,87),(9,89),(9,91),(10,18),(10,33),(10,37),(10,44),(10,48),(10,51),(10,88),(10,89),(10,92),(11,15),(11,18),(11,20),(11,38),(11,62),(11,65),(11,84),(11,87),(12,14),(12,17),(12,21),(12,39),(12,62),(12,64),(12,85),(12,88),(13,16),(13,19),(13,22),(13,40),(13,62),(13,63),(13,86),(13,89),(14,67),(14,94),(14,97),(14,112),(14,146),(15,66),(15,93),(15,98),(15,113),(15,146),(16,68),(16,95),(16,96),(16,114),(16,146),(17,70),(17,94),(17,100),(17,116),(17,145),(18,69),(18,93),(18,101),(18,115),(18,145),(19,71),(19,95),(19,99),(19,117),(19,145),(20,59),(20,93),(20,102),(20,111),(20,148),(21,60),(21,94),(21,102),(21,110),(21,149),(22,61),(22,95),(22,102),(22,109),(22,150),(23,59),(23,103),(23,105),(23,109),(23,110),(23,124),(24,60),(24,104),(24,106),(24,109),(24,111),(24,125),(25,61),(25,107),(25,108),(25,110),(25,111),(25,126),(26,53),(26,80),(26,97),(26,103),(26,118),(26,139),(27,54),(27,81),(27,98),(27,104),(27,119),(27,139),(28,55),(28,78),(28,96),(28,105),(28,118),(28,140),(29,56),(29,79),(29,96),(29,106),(29,119),(29,141),(30,57),(30,83),(30,97),(30,107),(30,120),(30,141),(31,58),(31,82),(31,98),(31,108),(31,120),(31,140),(32,55),(32,74),(32,100),(32,103),(32,121),(32,142),(33,56),(33,75),(33,101),(33,104),(33,122),(33,142),(34,53),(34,72),(34,99),(34,105),(34,121),(34,143),(35,54),(35,73),(35,99),(35,106),(35,122),(35,144),(36,58),(36,77),(36,100),(36,107),(36,123),(36,144),(37,57),(37,76),(37,101),(37,108),(37,123),(37,143),(38,59),(38,66),(38,69),(38,118),(38,121),(38,147),(39,60),(39,67),(39,70),(39,119),(39,122),(39,147),(40,61),(40,68),(40,71),(40,120),(40,123),(40,147),(41,66),(41,72),(41,74),(41,124),(41,139),(41,140),(42,67),(42,73),(42,75),(42,125),(42,139),(42,141),(43,68),(43,76),(43,77),(43,126),(43,140),(43,141),(44,69),(44,78),(44,80),(44,124),(44,142),(44,143),(45,70),(45,79),(45,81),(45,125),(45,142),(45,144),(46,71),(46,82),(46,83),(46,126),(46,143),(46,144),(47,55),(47,77),(47,79),(47,114),(47,116),(47,148),(48,56),(48,76),(48,78),(48,114),(48,115),(48,149),(49,53),(49,73),(49,83),(49,112),(49,117),(49,148),(50,54),(50,72),(50,82),(50,113),(50,117),(50,149),(51,57),(51,75),(51,80),(51,112),(51,115),(51,150),(52,58),(52,74),(52,81),(52,113),(52,116),(52,150),(53,152),(53,154),(53,158),(54,153),(54,154),(54,159),(55,151),(55,155),(55,158),(56,151),(56,156),(56,159),(57,152),(57,156),(57,160),(58,153),(58,155),(58,160),(59,127),(59,157),(59,158),(60,128),(60,157),(60,159),(61,129),(61,157),(61,160),(62,102),(62,145),(62,146),(62,147),(63,96),(63,99),(63,109),(63,139),(63,142),(63,147),(64,97),(64,100),(64,110),(64,140),(64,143),(64,147),(65,98),(65,101),(65,111),(65,141),(65,144),(65,147),(66,127),(66,130),(66,164),(67,128),(67,131),(67,164),(68,129),(68,132),(68,164),(69,127),(69,133),(69,165),(70,128),(70,134),(70,165),(71,129),(71,135),(71,165),(72,130),(72,154),(72,162),(73,131),(73,154),(73,163),(74,130),(74,155),(74,161),(75,131),(75,156),(75,161),(76,132),(76,156),(76,162),(77,132),(77,155),(77,163),(78,133),(78,151),(78,162),(79,134),(79,151),(79,163),(80,133),(80,152),(80,161),(81,134),(81,153),(81,161),(82,135),(82,153),(82,162),(83,135),(83,152),(83,163),(84,115),(84,118),(84,141),(84,146),(84,148),(85,116),(85,119),(85,140),(85,146),(85,149),(86,117),(86,120),(86,139),(86,146),(86,150),(87,113),(87,121),(87,144),(87,145),(87,148),(88,112),(88,122),(88,143),(88,145),(88,149),(89,114),(89,123),(89,142),(89,145),(89,150),(90,95),(90,105),(90,106),(90,126),(90,148),(90,149),(91,94),(91,103),(91,107),(91,125),(91,148),(91,150),(92,93),(92,104),(92,108),(92,124),(92,149),(92,150),(93,127),(93,138),(93,166),(94,128),(94,137),(94,166),(95,129),(95,136),(95,166),(96,136),(96,151),(96,164),(97,137),(97,152),(97,164),(98,138),(98,153),(98,164),(99,136),(99,154),(99,165),(100,137),(100,155),(100,165),(101,138),(101,156),(101,165),(102,157),(102,166),(103,137),(103,158),(103,161),(104,138),(104,159),(104,161),(105,136),(105,158),(105,162),(106,136),(106,159),(106,163),(107,137),(107,160),(107,163),(108,138),(108,160),(108,162),(109,136),(109,157),(109,161),(110,137),(110,157),(110,162),(111,138),(111,157),(111,163),(112,131),(112,152),(112,166),(113,130),(113,153),(113,166),(114,132),(114,151),(114,166),(115,133),(115,156),(115,166),(116,134),(116,155),(116,166),(117,135),(117,154),(117,166),(118,133),(118,158),(118,164),(119,134),(119,159),(119,164),(120,135),(120,160),(120,164),(121,130),(121,158),(121,165),(122,131),(122,159),(122,165),(123,132),(123,160),(123,165),(124,127),(124,161),(124,162),(125,128),(125,161),(125,163),(126,129),(126,162),(126,163),(127,167),(128,167),(129,167),(130,167),(131,167),(132,167),(133,167),(134,167),(135,167),(136,167),(137,167),(138,167),(139,154),(139,161),(139,164),(140,155),(140,162),(140,164),(141,156),(141,163),(141,164),(142,151),(142,161),(142,165),(143,152),(143,162),(143,165),(144,153),(144,163),(144,165),(145,165),(145,166),(146,164),(146,166),(147,157),(147,164),(147,165),(148,158),(148,163),(148,166),(149,159),(149,162),(149,166),(150,160),(150,161),(150,166),(151,167),(152,167),(153,167),(154,167),(155,167),(156,167),(157,167),(158,167),(159,167),(160,167),(161,167),(162,167),(163,167),(164,167),(165,167),(166,167)],168)
=> ? = 1
[1,1,1,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,15),(1,26),(1,27),(1,32),(1,33),(1,41),(1,42),(1,91),(1,94),(2,14),(2,23),(2,25),(2,29),(2,31),(2,40),(2,42),(2,90),(2,93),(3,13),(3,22),(3,24),(3,28),(3,30),(3,40),(3,41),(3,89),(3,92),(4,18),(4,24),(4,25),(4,34),(4,35),(4,43),(4,44),(4,86),(4,94),(5,17),(5,22),(5,26),(5,36),(5,38),(5,43),(5,45),(5,87),(5,93),(6,16),(6,23),(6,27),(6,37),(6,39),(6,44),(6,45),(6,88),(6,92),(7,21),(7,30),(7,31),(7,36),(7,37),(7,46),(7,47),(7,86),(7,91),(8,20),(8,28),(8,32),(8,34),(8,39),(8,46),(8,48),(8,87),(8,90),(9,19),(9,29),(9,33),(9,35),(9,38),(9,47),(9,48),(9,88),(9,89),(10,19),(10,20),(10,21),(10,49),(10,92),(10,93),(10,94),(11,16),(11,17),(11,18),(11,49),(11,89),(11,90),(11,91),(12,13),(12,14),(12,15),(12,49),(12,86),(12,87),(12,88),(13,53),(13,54),(13,98),(13,100),(13,134),(14,53),(14,55),(14,99),(14,101),(14,135),(15,54),(15,55),(15,102),(15,103),(15,136),(16,56),(16,58),(16,107),(16,108),(16,134),(17,57),(17,58),(17,106),(17,109),(17,135),(18,56),(18,57),(18,104),(18,105),(18,136),(19,59),(19,61),(19,113),(19,114),(19,134),(20,60),(20,61),(20,112),(20,115),(20,135),(21,59),(21,60),(21,110),(21,111),(21,136),(22,63),(22,65),(22,80),(22,98),(22,106),(22,131),(23,64),(23,66),(23,81),(23,99),(23,107),(23,131),(24,62),(24,65),(24,82),(24,100),(24,104),(24,132),(25,62),(25,66),(25,83),(25,101),(25,105),(25,133),(26,63),(26,67),(26,84),(26,102),(26,109),(26,133),(27,64),(27,67),(27,85),(27,103),(27,108),(27,132),(28,69),(28,74),(28,82),(28,98),(28,112),(28,128),(29,70),(29,75),(29,83),(29,99),(29,113),(29,128),(30,68),(30,74),(30,80),(30,100),(30,110),(30,129),(31,68),(31,75),(31,81),(31,101),(31,111),(31,130),(32,69),(32,76),(32,85),(32,102),(32,115),(32,130),(33,70),(33,76),(33,84),(33,103),(33,114),(33,129),(34,72),(34,79),(34,82),(34,105),(34,115),(34,126),(35,71),(35,79),(35,83),(35,104),(35,114),(35,125),(36,73),(36,77),(36,80),(36,109),(36,111),(36,126),(37,73),(37,78),(37,81),(37,108),(37,110),(37,125),(38,71),(38,77),(38,84),(38,106),(38,113),(38,127),(39,72),(39,78),(39,85),(39,107),(39,112),(39,127),(40,50),(40,53),(40,62),(40,68),(40,128),(40,131),(41,50),(41,54),(41,63),(41,69),(41,129),(41,132),(42,50),(42,55),(42,64),(42,70),(42,130),(42,133),(43,51),(43,57),(43,65),(43,71),(43,126),(43,133),(44,51),(44,56),(44,66),(44,72),(44,125),(44,132),(45,51),(45,58),(45,67),(45,73),(45,127),(45,131),(46,52),(46,60),(46,74),(46,78),(46,126),(46,130),(47,52),(47,59),(47,75),(47,77),(47,125),(47,129),(48,52),(48,61),(48,76),(48,79),(48,127),(48,128),(49,134),(49,135),(49,136),(50,95),(50,147),(50,148),(51,96),(51,146),(51,148),(52,97),(52,146),(52,147),(53,95),(53,118),(53,151),(54,95),(54,116),(54,149),(55,95),(55,117),(55,150),(56,96),(56,120),(56,149),(57,96),(57,119),(57,150),(58,96),(58,121),(58,151),(59,97),(59,123),(59,149),(60,97),(60,122),(60,150),(61,97),(61,124),(61,151),(62,118),(62,142),(62,148),(63,116),(63,140),(63,148),(64,117),(64,141),(64,148),(65,119),(65,137),(65,148),(66,120),(66,138),(66,148),(67,121),(67,139),(67,148),(68,118),(68,143),(68,147),(69,116),(69,144),(69,147),(70,117),(70,145),(70,147),(71,119),(71,145),(71,146),(72,120),(72,144),(72,146),(73,121),(73,143),(73,146),(74,122),(74,137),(74,147),(75,123),(75,138),(75,147),(76,124),(76,139),(76,147),(77,123),(77,140),(77,146),(78,122),(78,141),(78,146),(79,124),(79,142),(79,146),(80,137),(80,140),(80,143),(81,138),(81,141),(81,143),(82,137),(82,142),(82,144),(83,138),(83,142),(83,145),(84,139),(84,140),(84,145),(85,139),(85,141),(85,144),(86,100),(86,101),(86,125),(86,126),(86,136),(87,98),(87,102),(87,126),(87,127),(87,135),(88,99),(88,103),(88,125),(88,127),(88,134),(89,104),(89,106),(89,128),(89,129),(89,134),(90,105),(90,107),(90,128),(90,130),(90,135),(91,108),(91,109),(91,129),(91,130),(91,136),(92,110),(92,112),(92,131),(92,132),(92,134),(93,111),(93,113),(93,131),(93,133),(93,135),(94,114),(94,115),(94,132),(94,133),(94,136),(95,152),(96,152),(97,152),(98,116),(98,137),(98,151),(99,117),(99,138),(99,151),(100,118),(100,137),(100,149),(101,118),(101,138),(101,150),(102,116),(102,139),(102,150),(103,117),(103,139),(103,149),(104,119),(104,142),(104,149),(105,120),(105,142),(105,150),(106,119),(106,140),(106,151),(107,120),(107,141),(107,151),(108,121),(108,141),(108,149),(109,121),(109,140),(109,150),(110,122),(110,143),(110,149),(111,123),(111,143),(111,150),(112,122),(112,144),(112,151),(113,123),(113,145),(113,151),(114,124),(114,145),(114,149),(115,124),(115,144),(115,150),(116,152),(117,152),(118,152),(119,152),(120,152),(121,152),(122,152),(123,152),(124,152),(125,138),(125,146),(125,149),(126,137),(126,146),(126,150),(127,139),(127,146),(127,151),(128,142),(128,147),(128,151),(129,140),(129,147),(129,149),(130,141),(130,147),(130,150),(131,143),(131,148),(131,151),(132,144),(132,148),(132,149),(133,145),(133,148),(133,150),(134,149),(134,151),(135,150),(135,151),(136,149),(136,150),(137,152),(138,152),(139,152),(140,152),(141,152),(142,152),(143,152),(144,152),(145,152),(146,152),(147,152),(148,152),(149,152),(150,152),(151,152)],153)
=> ? = 1
[1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ? = 1
[1,1,2,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ? = 1
[1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ? = 2
[1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,15),(1,20),(1,21),(1,23),(1,29),(1,69),(2,10),(2,14),(2,18),(2,19),(2,22),(2,28),(2,69),(3,13),(3,17),(3,19),(3,21),(3,25),(3,31),(3,68),(4,12),(4,16),(4,18),(4,20),(4,24),(4,30),(4,68),(5,14),(5,15),(5,16),(5,17),(5,27),(5,33),(5,67),(6,10),(6,11),(6,12),(6,13),(6,26),(6,32),(6,67),(7,28),(7,29),(7,30),(7,31),(7,32),(7,33),(7,66),(8,22),(8,23),(8,24),(8,25),(8,26),(8,27),(8,66),(9,66),(9,67),(9,68),(9,69),(10,34),(10,46),(10,58),(10,59),(10,87),(11,35),(11,47),(11,60),(11,61),(11,87),(12,36),(12,48),(12,58),(12,60),(12,88),(13,37),(13,49),(13,59),(13,61),(13,88),(14,38),(14,50),(14,62),(14,63),(14,87),(15,39),(15,51),(15,64),(15,65),(15,87),(16,40),(16,52),(16,62),(16,64),(16,88),(17,41),(17,53),(17,63),(17,65),(17,88),(18,42),(18,54),(18,58),(18,62),(18,86),(19,43),(19,55),(19,59),(19,63),(19,86),(20,44),(20,56),(20,60),(20,64),(20,86),(21,45),(21,57),(21,61),(21,65),(21,86),(22,34),(22,38),(22,42),(22,43),(22,89),(23,35),(23,39),(23,44),(23,45),(23,89),(24,36),(24,40),(24,42),(24,44),(24,90),(25,37),(25,41),(25,43),(25,45),(25,90),(26,34),(26,35),(26,36),(26,37),(26,91),(27,38),(27,39),(27,40),(27,41),(27,91),(28,46),(28,50),(28,54),(28,55),(28,89),(29,47),(29,51),(29,56),(29,57),(29,89),(30,48),(30,52),(30,54),(30,56),(30,90),(31,49),(31,53),(31,55),(31,57),(31,90),(32,46),(32,47),(32,48),(32,49),(32,91),(33,50),(33,51),(33,52),(33,53),(33,91),(34,70),(34,71),(34,93),(35,72),(35,73),(35,93),(36,70),(36,72),(36,94),(37,71),(37,73),(37,94),(38,74),(38,75),(38,93),(39,76),(39,77),(39,93),(40,74),(40,76),(40,94),(41,75),(41,77),(41,94),(42,70),(42,74),(42,95),(43,71),(43,75),(43,95),(44,72),(44,76),(44,95),(45,73),(45,77),(45,95),(46,78),(46,79),(46,93),(47,80),(47,81),(47,93),(48,78),(48,80),(48,94),(49,79),(49,81),(49,94),(50,82),(50,83),(50,93),(51,84),(51,85),(51,93),(52,82),(52,84),(52,94),(53,83),(53,85),(53,94),(54,78),(54,82),(54,95),(55,79),(55,83),(55,95),(56,80),(56,84),(56,95),(57,81),(57,85),(57,95),(58,70),(58,78),(58,92),(59,71),(59,79),(59,92),(60,72),(60,80),(60,92),(61,73),(61,81),(61,92),(62,74),(62,82),(62,92),(63,75),(63,83),(63,92),(64,76),(64,84),(64,92),(65,77),(65,85),(65,92),(66,89),(66,90),(66,91),(67,87),(67,88),(67,91),(68,86),(68,88),(68,90),(69,86),(69,87),(69,89),(70,96),(71,96),(72,96),(73,96),(74,96),(75,96),(76,96),(77,96),(78,96),(79,96),(80,96),(81,96),(82,96),(83,96),(84,96),(85,96),(86,92),(86,95),(87,92),(87,93),(88,92),(88,94),(89,93),(89,95),(90,94),(90,95),(91,93),(91,94),(92,96),(93,96),(94,96),(95,96)],97)
=> ? = 1
[1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ? = 1
[1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ? = 1
[1,2,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ? = 1
[1,2,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(2,11),(2,15),(2,20),(2,21),(2,23),(2,50),(3,10),(3,14),(3,18),(3,19),(3,22),(3,50),(4,13),(4,17),(4,19),(4,21),(4,25),(4,49),(5,12),(5,16),(5,18),(5,20),(5,24),(5,49),(6,14),(6,15),(6,16),(6,17),(6,27),(6,48),(7,10),(7,11),(7,12),(7,13),(7,26),(7,48),(8,9),(8,48),(8,49),(8,50),(9,59),(9,60),(9,61),(10,28),(10,40),(10,41),(10,63),(11,29),(11,42),(11,43),(11,63),(12,30),(12,40),(12,42),(12,64),(13,31),(13,41),(13,43),(13,64),(14,32),(14,44),(14,45),(14,63),(15,33),(15,46),(15,47),(15,63),(16,34),(16,44),(16,46),(16,64),(17,35),(17,45),(17,47),(17,64),(18,36),(18,40),(18,44),(18,62),(19,37),(19,41),(19,45),(19,62),(20,38),(20,42),(20,46),(20,62),(21,39),(21,43),(21,47),(21,62),(22,28),(22,32),(22,36),(22,37),(22,59),(23,29),(23,33),(23,38),(23,39),(23,59),(24,30),(24,34),(24,36),(24,38),(24,60),(25,31),(25,35),(25,37),(25,39),(25,60),(26,28),(26,29),(26,30),(26,31),(26,61),(27,32),(27,33),(27,34),(27,35),(27,61),(28,51),(28,52),(28,66),(29,53),(29,54),(29,66),(30,51),(30,53),(30,67),(31,52),(31,54),(31,67),(32,55),(32,56),(32,66),(33,57),(33,58),(33,66),(34,55),(34,57),(34,67),(35,56),(35,58),(35,67),(36,51),(36,55),(36,65),(37,52),(37,56),(37,65),(38,53),(38,57),(38,65),(39,54),(39,58),(39,65),(40,51),(40,68),(41,52),(41,68),(42,53),(42,68),(43,54),(43,68),(44,55),(44,68),(45,56),(45,68),(46,57),(46,68),(47,58),(47,68),(48,61),(48,63),(48,64),(49,60),(49,62),(49,64),(50,59),(50,62),(50,63),(51,69),(52,69),(53,69),(54,69),(55,69),(56,69),(57,69),(58,69),(59,65),(59,66),(60,65),(60,67),(61,66),(61,67),(62,65),(62,68),(63,66),(63,68),(64,67),(64,68),(65,69),(66,69),(67,69),(68,69)],70)
=> ? = 1
[1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ? = 1
[1,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 1
[1,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 1
[1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0
[2,1,1,1,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 1
[2,1,1,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 1
[2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 1
[2,1,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 1
[2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 1
[2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 1
[2,3,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
[2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
[3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 1
[3,1,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 1
[3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 1
[3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[5,1] => [1,5] => ([(4,5)],6)
=> ([(0,1)],2)
=> 0
[6] => [6] => ([],6)
=> ([],1)
=> ? = 0
[1,2,1,1,1,1] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(0,16),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(1,66),(1,143),(1,144),(1,145),(1,146),(2,19),(2,20),(2,26),(2,31),(2,32),(2,38),(2,63),(2,139),(2,140),(2,142),(2,144),(3,17),(3,18),(3,25),(3,29),(3,30),(3,37),(3,62),(3,137),(3,138),(3,142),(3,143),(4,22),(4,24),(4,28),(4,34),(4,36),(4,40),(4,65),(4,138),(4,140),(4,141),(4,146),(5,21),(5,23),(5,27),(5,33),(5,35),(5,39),(5,64),(5,137),(5,139),(5,141),(5,145),(6,23),(6,24),(6,25),(6,47),(6,48),(6,55),(6,67),(6,144),(6,147),(6,148),(6,152),(7,21),(7,22),(7,26),(7,49),(7,50),(7,56),(7,68),(7,143),(7,149),(7,150),(7,152),(8,18),(8,20),(8,27),(8,51),(8,53),(8,57),(8,69),(8,146),(8,147),(8,149),(8,151),(9,17),(9,19),(9,28),(9,52),(9,54),(9,58),(9,70),(9,145),(9,148),(9,150),(9,151),(10,29),(10,33),(10,44),(10,49),(10,52),(10,60),(10,71),(10,140),(10,147),(10,153),(10,155),(11,30),(11,34),(11,43),(11,50),(11,51),(11,61),(11,72),(11,139),(11,148),(11,153),(11,156),(12,31),(12,35),(12,42),(12,47),(12,54),(12,61),(12,73),(12,138),(12,149),(12,154),(12,155),(13,32),(13,36),(13,41),(13,48),(13,53),(13,60),(13,74),(13,137),(13,150),(13,154),(13,156),(14,39),(14,40),(14,46),(14,57),(14,58),(14,59),(14,76),(14,142),(14,152),(14,155),(14,156),(15,37),(15,38),(15,45),(15,55),(15,56),(15,59),(15,75),(15,141),(15,151),(15,153),(15,154),(16,62),(16,63),(16,64),(16,65),(16,66),(16,67),(16,68),(16,69),(16,70),(16,71),(16,72),(16,73),(16,74),(16,75),(16,76),(17,77),(17,92),(17,183),(17,188),(17,202),(17,210),(17,336),(18,78),(18,93),(18,182),(18,189),(18,203),(18,210),(18,337),(19,79),(19,94),(19,185),(19,188),(19,205),(19,211),(19,338),(20,80),(20,95),(20,184),(20,189),(20,204),(20,211),(20,339),(21,81),(21,96),(21,180),(21,186),(21,208),(21,212),(21,336),(22,82),(22,97),(22,181),(22,186),(22,209),(22,213),(22,337),(23,83),(23,98),(23,178),(23,187),(23,206),(23,212),(23,338),(24,84),(24,99),(24,179),(24,187),(24,207),(24,213),(24,339),(25,85),(25,100),(25,178),(25,179),(25,202),(25,203),(25,341),(26,86),(26,101),(26,180),(26,181),(26,204),(26,205),(26,341),(27,87),(27,102),(27,182),(27,184),(27,206),(27,208),(27,340),(28,88),(28,103),(28,183),(28,185),(28,207),(28,209),(28,340),(29,77),(29,104),(29,172),(29,190),(29,203),(29,214),(29,335),(30,78),(30,105),(30,173),(30,191),(30,202),(30,214),(30,334),(31,79),(31,106),(31,174),(31,193),(31,204),(31,215),(31,335),(32,80),(32,107),(32,175),(32,192),(32,205),(32,215),(32,334),(33,81),(33,108),(33,172),(33,194),(33,206),(33,216),(33,333),(34,82),(34,109),(34,173),(34,195),(34,207),(34,217),(34,333),(35,83),(35,110),(35,174),(35,196),(35,208),(35,216),(35,332),(36,84),(36,111),(36,175),(36,197),(36,209),(36,217),(36,332),(37,85),(37,112),(37,176),(37,198),(37,210),(37,214),(37,332),(38,86),(38,113),(38,176),(38,199),(38,211),(38,215),(38,333),(39,87),(39,114),(39,177),(39,200),(39,212),(39,216),(39,334),(40,88),(40,115),(40,177),(40,201),(40,213),(40,217),(40,335),(41,89),(41,116),(41,192),(41,197),(41,218),(41,220),(41,336),(42,90),(42,117),(42,193),(42,196),(42,218),(42,221),(42,337),(43,90),(43,118),(43,191),(43,195),(43,219),(43,220),(43,338),(44,89),(44,119),(44,190),(44,194),(44,219),(44,221),(44,339),(45,91),(45,120),(45,198),(45,199),(45,218),(45,219),(45,340),(46,91),(46,121),(46,200),(46,201),(46,220),(46,221),(46,341),(47,83),(47,122),(47,179),(47,193),(47,224),(47,228),(47,344),(48,84),(48,123),(48,178),(48,192),(48,225),(48,228),(48,345),(49,81),(49,124),(49,181),(49,190),(49,222),(49,229),(49,344),(50,82),(50,125),(50,180),(50,191),(50,223),(50,229),(50,345),(51,78),(51,126),(51,184),(51,195),(51,223),(51,230),(51,342),(52,77),(52,127),(52,185),(52,194),(52,222),(52,231),(52,342),(53,80),(53,128),(53,182),(53,197),(53,225),(53,230),(53,343),(54,79),(54,129),(54,183),(54,196),(54,224),(54,231),(54,343),(55,85),(55,130),(55,187),(55,199),(55,226),(55,228),(55,342),(56,86),(56,131),(56,186),(56,198),(56,226),(56,229),(56,343),(57,87),(57,132),(57,189),(57,201),(57,227),(57,230),(57,344),(58,88),(58,133),(58,188),(58,200),(58,227),(58,231),(58,345),(59,91),(59,136),(59,176),(59,177),(59,226),(59,227),(59,346),(60,89),(60,134),(60,172),(60,175),(60,222),(60,225),(60,346),(61,90),(61,135),(61,173),(61,174),(61,223),(61,224),(61,346),(62,92),(62,93),(62,100),(62,104),(62,105),(62,112),(62,232),(62,233),(62,237),(62,238),(63,94),(63,95),(63,101),(63,106),(63,107),(63,113),(63,234),(63,235),(63,237),(63,239),(64,96),(64,98),(64,102),(64,108),(64,110),(64,114),(64,232),(64,234),(64,236),(64,240),(65,97),(65,99),(65,103),(65,109),(65,111),(65,115),(65,233),(65,235),(65,236),(65,241),(66,116),(66,117),(66,118),(66,119),(66,120),(66,121),(66,238),(66,239),(66,240),(66,241),(67,98),(67,99),(67,100),(67,122),(67,123),(67,130),(67,239),(67,242),(67,243),(67,247),(68,96),(68,97),(68,101),(68,124),(68,125),(68,131),(68,238),(68,244),(68,245),(68,247),(69,93),(69,95),(69,102),(69,126),(69,128),(69,132),(69,241),(69,242),(69,244),(69,246),(70,92),(70,94),(70,103),(70,127),(70,129),(70,133),(70,240),(70,243),(70,245),(70,246),(71,104),(71,108),(71,119),(71,124),(71,127),(71,134),(71,235),(71,242),(71,248),(71,250),(72,105),(72,109),(72,118),(72,125),(72,126),(72,135),(72,234),(72,243),(72,248),(72,251),(73,106),(73,110),(73,117),(73,122),(73,129),(73,135),(73,233),(73,244),(73,249),(73,250),(74,107),(74,111),(74,116),(74,123),(74,128),(74,134),(74,232),(74,245),(74,249),(74,251),(75,112),(75,113),(75,120),(75,130),(75,131),(75,136),(75,236),(75,246),(75,248),(75,249),(76,114),(76,115),(76,121),(76,132),(76,133),(76,136),(76,237),(76,247),(76,250),(76,251),(77,157),(77,347),(77,355),(77,356),(78,158),(78,347),(78,354),(78,357),(79,159),(79,348),(79,355),(79,358),(80,160),(80,348),(80,354),(80,359),(81,161),(81,349),(81,353),(81,356),(82,162),(82,350),(82,353),(82,357),(83,163),(83,349),(83,352),(83,358),(84,164),(84,350),(84,352),(84,359),(85,165),(85,347),(85,352),(85,360),(86,166),(86,348),(86,353),(86,360),(87,167),(87,349),(87,354),(87,361),(88,168),(88,350),(88,355),(88,361),(89,169),(89,351),(89,356),(89,359),(90,170),(90,351),(90,357),(90,358),(91,171),(91,351),(91,360),(91,361),(92,157),(92,263),(92,268),(92,282),(92,290),(92,366),(93,158),(93,262),(93,269),(93,283),(93,290),(93,367),(94,159),(94,265),(94,268),(94,285),(94,291),(94,368),(95,160),(95,264),(95,269),(95,284),(95,291),(95,369),(96,161),(96,260),(96,266),(96,288),(96,292),(96,366),(97,162),(97,261),(97,266),(97,289),(97,293),(97,367),(98,163),(98,258),(98,267),(98,286),(98,292),(98,368),(99,164),(99,259),(99,267),(99,287),(99,293),(99,369),(100,165),(100,258),(100,259),(100,282),(100,283),(100,371),(101,166),(101,260),(101,261),(101,284),(101,285),(101,371),(102,167),(102,262),(102,264),(102,286),(102,288),(102,370),(103,168),(103,263),(103,265),(103,287),(103,289),(103,370),(104,157),(104,252),(104,270),(104,283),(104,294),(104,365),(105,158),(105,253),(105,271),(105,282),(105,294),(105,364),(106,159),(106,254),(106,273),(106,284),(106,295),(106,365),(107,160),(107,255),(107,272),(107,285),(107,295),(107,364),(108,161),(108,252),(108,274),(108,286),(108,296),(108,363),(109,162),(109,253),(109,275),(109,287),(109,297),(109,363),(110,163),(110,254),(110,276),(110,288),(110,296),(110,362),(111,164),(111,255),(111,277),(111,289),(111,297),(111,362),(112,165),(112,256),(112,278),(112,290),(112,294),(112,362),(113,166),(113,256),(113,279),(113,291),(113,295),(113,363),(114,167),(114,257),(114,280),(114,292),(114,296),(114,364),(115,168),(115,257),(115,281),(115,293),(115,297),(115,365),(116,169),(116,272),(116,277),(116,298),(116,300),(116,366),(117,170),(117,273),(117,276),(117,298),(117,301),(117,367),(118,170),(118,271),(118,275),(118,299),(118,300),(118,368),(119,169),(119,270),(119,274),(119,299),(119,301),(119,369),(120,171),(120,278),(120,279),(120,298),(120,299),(120,370),(121,171),(121,280),(121,281),(121,300),(121,301),(121,371),(122,163),(122,259),(122,273),(122,304),(122,308),(122,374),(123,164),(123,258),(123,272),(123,305),(123,308),(123,375),(124,161),(124,261),(124,270),(124,302),(124,309),(124,374),(125,162),(125,260),(125,271),(125,303),(125,309),(125,375),(126,158),(126,264),(126,275),(126,303),(126,310),(126,372),(127,157),(127,265),(127,274),(127,302),(127,311),(127,372),(128,160),(128,262),(128,277),(128,305),(128,310),(128,373),(129,159),(129,263),(129,276),(129,304),(129,311),(129,373),(130,165),(130,267),(130,279),(130,306),(130,308),(130,372),(131,166),(131,266),(131,278),(131,306),(131,309),(131,373),(132,167),(132,269),(132,281),(132,307),(132,310),(132,374),(133,168),(133,268),(133,280),(133,307),(133,311),(133,375),(134,169),(134,252),(134,255),(134,302),(134,305),(134,376),(135,170),(135,253),(135,254),(135,303),(135,304),(135,376),(136,171),(136,256),(136,257),(136,306),(136,307),(136,376),(137,172),(137,178),(137,182),(137,232),(137,332),(137,334),(137,336),(138,173),(138,179),(138,183),(138,233),(138,332),(138,335),(138,337),(139,174),(139,180),(139,184),(139,234),(139,333),(139,334),(139,338),(140,175),(140,181),(140,185),(140,235),(140,333),(140,335),(140,339),(141,177),(141,186),(141,187),(141,236),(141,332),(141,333),(141,340),(142,176),(142,188),(142,189),(142,237),(142,334),(142,335),(142,341),(143,190),(143,191),(143,198),(143,238),(143,336),(143,337),(143,341),(144,192),(144,193),(144,199),(144,239),(144,338),(144,339),(144,341),(145,194),(145,196),(145,200),(145,240),(145,336),(145,338),(145,340),(146,195),(146,197),(146,201),(146,241),(146,337),(146,339),(146,340),(147,203),(147,206),(147,225),(147,242),(147,339),(147,342),(147,344),(148,202),(148,207),(148,224),(148,243),(148,338),(148,342),(148,345),(149,204),(149,208),(149,223),(149,244),(149,337),(149,343),(149,344),(150,205),(150,209),(150,222),(150,245),(150,336),(150,343),(150,345),(151,210),(151,211),(151,227),(151,246),(151,340),(151,342),(151,343),(152,212),(152,213),(152,226),(152,247),(152,341),(152,344),(152,345),(153,214),(153,219),(153,229),(153,248),(153,333),(153,342),(153,346),(154,215),(154,218),(154,228),(154,249),(154,332),(154,343),(154,346),(155,216),(155,221),(155,231),(155,250),(155,335),(155,344),(155,346),(156,217),(156,220),(156,230),(156,251),(156,334),(156,345),(156,346),(157,377),(157,385),(157,386),(158,377),(158,384),(158,387),(159,378),(159,385),(159,388),(160,378),(160,384),(160,389),(161,379),(161,383),(161,386),(162,380),(162,383),(162,387),(163,379),(163,382),(163,388),(164,380),(164,382),(164,389),(165,377),(165,382),(165,390),(166,378),(166,383),(166,390),(167,379),(167,384),(167,391),(168,380),(168,385),(168,391),(169,381),(169,386),(169,389),(170,381),(170,387),(170,388),(171,381),(171,390),(171,391),(172,252),(172,312),(172,356),(172,393),(173,253),(173,313),(173,357),(173,393),(174,254),(174,314),(174,358),(174,393),(175,255),(175,315),(175,359),(175,393),(176,256),(176,316),(176,360),(176,393),(177,257),(177,317),(177,361),(177,393),(178,258),(178,312),(178,352),(178,396),(179,259),(179,313),(179,352),(179,397),(180,260),(180,314),(180,353),(180,396),(181,261),(181,315),(181,353),(181,397),(182,262),(182,312),(182,354),(182,394),(183,263),(183,313),(183,355),(183,394),(184,264),(184,314),(184,354),(184,395),(185,265),(185,315),(185,355),(185,395),(186,266),(186,317),(186,353),(186,394),(187,267),(187,317),(187,352),(187,395),(188,268),(188,316),(188,355),(188,396),(189,269),(189,316),(189,354),(189,397),(190,270),(190,318),(190,356),(190,397),(191,271),(191,318),(191,357),(191,396),(192,272),(192,319),(192,359),(192,396),(193,273),(193,319),(193,358),(193,397),(194,274),(194,320),(194,356),(194,395),(195,275),(195,321),(195,357),(195,395),(196,276),(196,320),(196,358),(196,394),(197,277),(197,321),(197,359),(197,394),(198,278),(198,318),(198,360),(198,394),(199,279),(199,319),(199,360),(199,395),(200,280),(200,320),(200,361),(200,396),(201,281),(201,321),(201,361),(201,397),(202,282),(202,313),(202,347),(202,396),(203,283),(203,312),(203,347),(203,397),(204,284),(204,314),(204,348),(204,397),(205,285),(205,315),(205,348),(205,396),(206,286),(206,312),(206,349),(206,395),(207,287),(207,313),(207,350),(207,395),(208,288),(208,314),(208,349),(208,394),(209,289),(209,315),(209,350),(209,394),(210,290),(210,316),(210,347),(210,394),(211,291),(211,316),(211,348),(211,395),(212,292),(212,317),(212,349),(212,396),(213,293),(213,317),(213,350),(213,397),(214,294),(214,318),(214,347),(214,393),(215,295),(215,319),(215,348),(215,393),(216,296),(216,320),(216,349),(216,393),(217,297),(217,321),(217,350),(217,393),(218,298),(218,319),(218,351),(218,394),(219,299),(219,318),(219,351),(219,395),(220,300),(220,321),(220,351),(220,396),(221,301),(221,320),(221,351),(221,397),(222,302),(222,315),(222,356),(222,392),(223,303),(223,314),(223,357),(223,392),(224,304),(224,313),(224,358),(224,392),(225,305),(225,312),(225,359),(225,392),(226,306),(226,317),(226,360),(226,392),(227,307),(227,316),(227,361),(227,392),(228,308),(228,319),(228,352),(228,392),(229,309),(229,318),(229,353),(229,392),(230,310),(230,321),(230,354),(230,392),(231,311),(231,320),(231,355),(231,392),(232,252),(232,258),(232,262),(232,362),(232,364),(232,366),(233,253),(233,259),(233,263),(233,362),(233,365),(233,367),(234,254),(234,260),(234,264),(234,363),(234,364),(234,368),(235,255),(235,261),(235,265),(235,363),(235,365),(235,369),(236,257),(236,266),(236,267),(236,362),(236,363),(236,370),(237,256),(237,268),(237,269),(237,364),(237,365),(237,371),(238,270),(238,271),(238,278),(238,366),(238,367),(238,371),(239,272),(239,273),(239,279),(239,368),(239,369),(239,371),(240,274),(240,276),(240,280),(240,366),(240,368),(240,370),(241,275),(241,277),(241,281),(241,367),(241,369),(241,370),(242,283),(242,286),(242,305),(242,369),(242,372),(242,374),(243,282),(243,287),(243,304),(243,368),(243,372),(243,375),(244,284),(244,288),(244,303),(244,367),(244,373),(244,374),(245,285),(245,289),(245,302),(245,366),(245,373),(245,375),(246,290),(246,291),(246,307),(246,370),(246,372),(246,373),(247,292),(247,293),(247,306),(247,371),(247,374),(247,375),(248,294),(248,299),(248,309),(248,363),(248,372),(248,376),(249,295),(249,298),(249,308),(249,362),(249,373),(249,376),(250,296),(250,301),(250,311),(250,365),(250,374),(250,376),(251,297),(251,300),(251,310),(251,364),(251,375),(251,376),(252,322),(252,386),(252,398),(253,323),(253,387),(253,398),(254,324),(254,388),(254,398),(255,325),(255,389),(255,398),(256,326),(256,390),(256,398),(257,327),(257,391),(257,398),(258,322),(258,382),(258,401),(259,323),(259,382),(259,402),(260,324),(260,383),(260,401),(261,325),(261,383),(261,402),(262,322),(262,384),(262,399),(263,323),(263,385),(263,399),(264,324),(264,384),(264,400),(265,325),(265,385),(265,400),(266,327),(266,383),(266,399),(267,327),(267,382),(267,400),(268,326),(268,385),(268,401),(269,326),(269,384),(269,402),(270,328),(270,386),(270,402),(271,328),(271,387),(271,401),(272,329),(272,389),(272,401),(273,329),(273,388),(273,402),(274,330),(274,386),(274,400),(275,331),(275,387),(275,400),(276,330),(276,388),(276,399),(277,331),(277,389),(277,399),(278,328),(278,390),(278,399),(279,329),(279,390),(279,400),(280,330),(280,391),(280,401),(281,331),(281,391),(281,402),(282,323),(282,377),(282,401),(283,322),(283,377),(283,402),(284,324),(284,378),(284,402),(285,325),(285,378),(285,401),(286,322),(286,379),(286,400),(287,323),(287,380),(287,400),(288,324),(288,379),(288,399),(289,325),(289,380),(289,399),(290,326),(290,377),(290,399),(291,326),(291,378),(291,400),(292,327),(292,379),(292,401),(293,327),(293,380),(293,402),(294,328),(294,377),(294,398),(295,329),(295,378),(295,398),(296,330),(296,379),(296,398),(297,331),(297,380),(297,398),(298,329),(298,381),(298,399),(299,328),(299,381),(299,400),(300,331),(300,381),(300,401),(301,330),(301,381),(301,402),(302,325),(302,386),(302,403),(303,324),(303,387),(303,403),(304,323),(304,388),(304,403),(305,322),(305,389),(305,403),(306,327),(306,390),(306,403),(307,326),(307,391),(307,403),(308,329),(308,382),(308,403),(309,328),(309,383),(309,403),(310,331),(310,384),(310,403),(311,330),(311,385),(311,403),(312,322),(312,404),(313,323),(313,404),(314,324),(314,404),(315,325),(315,404),(316,326),(316,404),(317,327),(317,404),(318,328),(318,404),(319,329),(319,404),(320,330),(320,404),(321,331),(321,404),(322,405),(323,405),(324,405),(325,405),(326,405),(327,405),(328,405),(329,405),(330,405),(331,405),(332,352),(332,362),(332,393),(332,394),(333,353),(333,363),(333,393),(333,395),(334,354),(334,364),(334,393),(334,396),(335,355),(335,365),(335,393),(335,397),(336,356),(336,366),(336,394),(336,396),(337,357),(337,367),(337,394),(337,397),(338,358),(338,368),(338,395),(338,396),(339,359),(339,369),(339,395),(339,397),(340,361),(340,370),(340,394),(340,395),(341,360),(341,371),(341,396),(341,397),(342,347),(342,372),(342,392),(342,395),(343,348),(343,373),(343,392),(343,394),(344,349),(344,374),(344,392),(344,397),(345,350),(345,375),(345,392),(345,396),(346,351),(346,376),(346,392),(346,393),(347,377),(347,404),(348,378),(348,404),(349,379),(349,404),(350,380),(350,404),(351,381),(351,404),(352,382),(352,404),(353,383),(353,404),(354,384),(354,404),(355,385),(355,404),(356,386),(356,404),(357,387),(357,404),(358,388),(358,404),(359,389),(359,404),(360,390),(360,404),(361,391),(361,404),(362,382),(362,398),(362,399),(363,383),(363,398),(363,400),(364,384),(364,398),(364,401),(365,385),(365,398),(365,402),(366,386),(366,399),(366,401),(367,387),(367,399),(367,402),(368,388),(368,400),(368,401),(369,389),(369,400),(369,402),(370,391),(370,399),(370,400),(371,390),(371,401),(371,402),(372,377),(372,400),(372,403),(373,378),(373,399),(373,403),(374,379),(374,402),(374,403),(375,380),(375,401),(375,403),(376,381),(376,398),(376,403),(377,405),(378,405),(379,405),(380,405),(381,405),(382,405),(383,405),(384,405),(385,405),(386,405),(387,405),(388,405),(389,405),(390,405),(391,405),(392,403),(392,404),(393,398),(393,404),(394,399),(394,404),(395,400),(395,404),(396,401),(396,404),(397,402),(397,404),(398,405),(399,405),(400,405),(401,405),(402,405),(403,405),(404,405)],406)
=> ? = 1
[1,2,1,1,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,21),(1,25),(1,33),(1,37),(1,54),(1,56),(1,140),(1,143),(1,147),(1,153),(2,20),(2,24),(2,32),(2,36),(2,53),(2,55),(2,140),(2,142),(2,146),(2,152),(3,23),(3,27),(3,35),(3,39),(3,53),(3,57),(3,141),(3,143),(3,144),(3,150),(4,22),(4,26),(4,34),(4,38),(4,54),(4,58),(4,141),(4,142),(4,145),(4,151),(5,30),(5,31),(5,42),(5,43),(5,52),(5,60),(5,142),(5,143),(5,149),(5,155),(6,28),(6,29),(6,40),(6,41),(6,52),(6,59),(6,140),(6,141),(6,148),(6,154),(7,17),(7,22),(7,23),(7,29),(7,45),(7,62),(7,67),(7,68),(7,146),(7,147),(7,149),(8,16),(8,20),(8,21),(8,28),(8,44),(8,61),(8,65),(8,66),(8,144),(8,145),(8,149),(9,18),(9,24),(9,26),(9,31),(9,46),(9,63),(9,69),(9,71),(9,144),(9,147),(9,148),(10,19),(10,25),(10,27),(10,30),(10,47),(10,64),(10,70),(10,72),(10,145),(10,146),(10,148),(11,16),(11,32),(11,33),(11,40),(11,48),(11,62),(11,69),(11,70),(11,150),(11,151),(11,155),(12,17),(12,34),(12,35),(12,41),(12,49),(12,61),(12,71),(12,72),(12,152),(12,153),(12,155),(13,18),(13,36),(13,38),(13,43),(13,50),(13,64),(13,65),(13,67),(13,150),(13,153),(13,154),(14,19),(14,37),(14,39),(14,42),(14,51),(14,63),(14,66),(14,68),(14,151),(14,152),(14,154),(15,44),(15,45),(15,46),(15,47),(15,48),(15,49),(15,50),(15,51),(15,55),(15,56),(15,57),(15,58),(15,59),(15,60),(16,88),(16,89),(16,96),(16,136),(16,292),(16,293),(16,297),(17,90),(17,91),(17,97),(17,137),(17,294),(17,295),(17,297),(18,92),(18,94),(18,99),(18,138),(18,292),(18,295),(18,296),(19,93),(19,95),(19,98),(19,139),(19,293),(19,294),(19,296),(20,76),(20,88),(20,112),(20,184),(20,208),(20,232),(20,325),(21,77),(21,89),(21,113),(21,185),(21,209),(21,232),(21,326),(22,78),(22,90),(22,114),(22,186),(22,211),(22,233),(22,325),(23,79),(23,91),(23,115),(23,187),(23,210),(23,233),(23,326),(24,80),(24,92),(24,116),(24,190),(24,208),(24,234),(24,324),(25,81),(25,93),(25,117),(25,191),(25,209),(25,235),(25,324),(26,82),(26,94),(26,118),(26,188),(26,211),(26,234),(26,323),(27,83),(27,95),(27,119),(27,189),(27,210),(27,235),(27,323),(28,84),(28,96),(28,120),(28,192),(28,212),(28,232),(28,323),(29,85),(29,97),(29,121),(29,193),(29,212),(29,233),(29,324),(30,86),(30,98),(30,122),(30,194),(30,213),(30,235),(30,325),(31,87),(31,99),(31,123),(31,195),(31,213),(31,234),(31,326),(32,80),(32,88),(32,124),(32,198),(32,214),(32,236),(32,329),(33,81),(33,89),(33,125),(33,199),(33,215),(33,236),(33,330),(34,82),(34,90),(34,126),(34,196),(34,217),(34,237),(34,329),(35,83),(35,91),(35,127),(35,197),(35,216),(35,237),(35,330),(36,76),(36,92),(36,128),(36,202),(36,214),(36,238),(36,328),(37,77),(37,93),(37,129),(37,203),(37,215),(37,239),(37,328),(38,78),(38,94),(38,130),(38,200),(38,217),(38,238),(38,327),(39,79),(39,95),(39,131),(39,201),(39,216),(39,239),(39,327),(40,85),(40,96),(40,132),(40,204),(40,218),(40,236),(40,327),(41,84),(41,97),(41,133),(41,205),(41,218),(41,237),(41,328),(42,87),(42,98),(42,134),(42,207),(42,219),(42,239),(42,329),(43,86),(43,99),(43,135),(43,206),(43,219),(43,238),(43,330),(44,100),(44,104),(44,105),(44,112),(44,113),(44,120),(44,136),(44,220),(44,221),(44,225),(45,101),(45,106),(45,107),(45,114),(45,115),(45,121),(45,137),(45,222),(45,223),(45,225),(46,102),(46,108),(46,110),(46,116),(46,118),(46,123),(46,138),(46,220),(46,223),(46,224),(47,103),(47,109),(47,111),(47,117),(47,119),(47,122),(47,139),(47,221),(47,222),(47,224),(48,101),(48,108),(48,109),(48,124),(48,125),(48,132),(48,136),(48,226),(48,227),(48,231),(49,100),(49,110),(49,111),(49,126),(49,127),(49,133),(49,137),(49,228),(49,229),(49,231),(50,103),(50,104),(50,106),(50,128),(50,130),(50,135),(50,138),(50,226),(50,229),(50,230),(51,102),(51,105),(51,107),(51,129),(51,131),(51,134),(51,139),(51,227),(51,228),(51,230),(52,75),(52,212),(52,213),(52,218),(52,219),(52,304),(53,73),(53,208),(53,210),(53,214),(53,216),(53,304),(54,74),(54,209),(54,211),(54,215),(54,217),(54,304),(55,73),(55,112),(55,116),(55,124),(55,128),(55,156),(55,158),(55,222),(55,228),(56,74),(56,113),(56,117),(56,125),(56,129),(56,156),(56,159),(56,223),(56,229),(57,73),(57,115),(57,119),(57,127),(57,131),(57,157),(57,159),(57,220),(57,226),(58,74),(58,114),(58,118),(58,126),(58,130),(58,157),(58,158),(58,221),(58,227),(59,75),(59,120),(59,121),(59,132),(59,133),(59,156),(59,157),(59,224),(59,230),(60,75),(60,122),(60,123),(60,134),(60,135),(60,158),(60,159),(60,225),(60,231),(61,84),(61,100),(61,184),(61,185),(61,196),(61,197),(61,297),(62,85),(62,101),(62,186),(62,187),(62,198),(62,199),(62,297),(63,87),(63,102),(63,188),(63,190),(63,201),(63,203),(63,296),(64,86),(64,103),(64,189),(64,191),(64,200),(64,202),(64,296),(65,76),(65,104),(65,185),(65,192),(65,200),(65,206),(65,292),(66,77),(66,105),(66,184),(66,192),(66,201),(66,207),(66,293),(67,78),(67,106),(67,187),(67,193),(67,202),(67,206),(67,295),(68,79),(68,107),(68,186),(68,193),(68,203),(68,207),(68,294),(69,80),(69,108),(69,188),(69,195),(69,199),(69,204),(69,292),(70,81),(70,109),(70,189),(70,194),(70,198),(70,204),(70,293),(71,82),(71,110),(71,190),(71,195),(71,197),(71,205),(71,295),(72,83),(72,111),(72,191),(72,194),(72,196),(72,205),(72,294),(73,240),(73,242),(73,246),(73,248),(73,337),(74,241),(74,243),(74,247),(74,249),(74,337),(75,244),(75,245),(75,250),(75,251),(75,337),(76,172),(76,317),(76,346),(76,352),(77,173),(77,318),(77,346),(77,353),(78,174),(78,320),(78,347),(78,352),(79,175),(79,319),(79,347),(79,353),(80,176),(80,317),(80,348),(80,351),(81,177),(81,318),(81,349),(81,351),(82,178),(82,320),(82,348),(82,350),(83,179),(83,319),(83,349),(83,350),(84,180),(84,321),(84,346),(84,350),(85,181),(85,321),(85,347),(85,351),(86,182),(86,322),(86,349),(86,352),(87,183),(87,322),(87,348),(87,353),(88,160),(88,284),(88,317),(88,364),(89,161),(89,284),(89,318),(89,365),(90,162),(90,285),(90,320),(90,364),(91,163),(91,285),(91,319),(91,365),(92,164),(92,286),(92,317),(92,363),(93,165),(93,287),(93,318),(93,363),(94,166),(94,286),(94,320),(94,362),(95,167),(95,287),(95,319),(95,362),(96,168),(96,284),(96,321),(96,362),(97,169),(97,285),(97,321),(97,363),(98,170),(98,287),(98,322),(98,364),(99,171),(99,286),(99,322),(99,365),(100,180),(100,260),(100,261),(100,272),(100,273),(100,316),(101,181),(101,262),(101,263),(101,274),(101,275),(101,316),(102,183),(102,264),(102,266),(102,277),(102,279),(102,315),(103,182),(103,265),(103,267),(103,276),(103,278),(103,315),(104,172),(104,261),(104,268),(104,276),(104,282),(104,311),(105,173),(105,260),(105,268),(105,277),(105,283),(105,312),(106,174),(106,263),(106,269),(106,278),(106,282),(106,314),(107,175),(107,262),(107,269),(107,279),(107,283),(107,313),(108,176),(108,264),(108,271),(108,275),(108,280),(108,311),(109,177),(109,265),(109,270),(109,274),(109,280),(109,312),(110,178),(110,266),(110,271),(110,273),(110,281),(110,314),(111,179),(111,267),(111,270),(111,272),(111,281),(111,313),(112,160),(112,172),(112,240),(112,252),(112,260),(112,340),(113,161),(113,173),(113,241),(113,252),(113,261),(113,341),(114,162),(114,174),(114,243),(114,253),(114,262),(114,340),(115,163),(115,175),(115,242),(115,253),(115,263),(115,341),(116,164),(116,176),(116,240),(116,254),(116,266),(116,339),(117,165),(117,177),(117,241),(117,255),(117,267),(117,339),(118,166),(118,178),(118,243),(118,254),(118,264),(118,338),(119,167),(119,179),(119,242),(119,255),(119,265),(119,338),(120,168),(120,180),(120,244),(120,252),(120,268),(120,338),(121,169),(121,181),(121,244),(121,253),(121,269),(121,339),(122,170),(122,182),(122,245),(122,255),(122,270),(122,340),(123,171),(123,183),(123,245),(123,254),(123,271),(123,341),(124,160),(124,176),(124,246),(124,256),(124,274),(124,344),(125,161),(125,177),(125,247),(125,256),(125,275),(125,345),(126,162),(126,178),(126,249),(126,257),(126,272),(126,344),(127,163),(127,179),(127,248),(127,257),(127,273),(127,345),(128,164),(128,172),(128,246),(128,258),(128,278),(128,343),(129,165),(129,173),(129,247),(129,259),(129,279),(129,343),(130,166),(130,174),(130,249),(130,258),(130,276),(130,342),(131,167),(131,175),(131,248),(131,259),(131,277),(131,342),(132,168),(132,181),(132,250),(132,256),(132,280),(132,342),(133,169),(133,180),(133,250),(133,257),(133,281),(133,343),(134,170),(134,183),(134,251),(134,259),(134,283),(134,344),(135,171),(135,182),(135,251),(135,258),(135,282),(135,345),(136,160),(136,161),(136,168),(136,311),(136,312),(136,316),(137,162),(137,163),(137,169),(137,313),(137,314),(137,316),(138,164),(138,166),(138,171),(138,311),(138,314),(138,315),(139,165),(139,167),(139,170),(139,312),(139,313),(139,315),(140,156),(140,232),(140,236),(140,304),(140,324),(140,328),(141,157),(141,233),(141,237),(141,304),(141,323),(141,327),(142,158),(142,234),(142,238),(142,304),(142,325),(142,329),(143,159),(143,235),(143,239),(143,304),(143,326),(143,330),(144,197),(144,201),(144,208),(144,220),(144,292),(144,323),(144,326),(145,196),(145,200),(145,209),(145,221),(145,293),(145,323),(145,325),(146,198),(146,202),(146,210),(146,222),(146,294),(146,324),(146,325),(147,199),(147,203),(147,211),(147,223),(147,295),(147,324),(147,326),(148,204),(148,205),(148,213),(148,224),(148,296),(148,323),(148,324),(149,206),(149,207),(149,212),(149,225),(149,297),(149,325),(149,326),(150,187),(150,189),(150,214),(150,226),(150,292),(150,327),(150,330),(151,186),(151,188),(151,215),(151,227),(151,293),(151,327),(151,329),(152,184),(152,190),(152,216),(152,228),(152,294),(152,328),(152,329),(153,185),(153,191),(153,217),(153,229),(153,295),(153,328),(153,330),(154,192),(154,193),(154,219),(154,230),(154,296),(154,327),(154,328),(155,194),(155,195),(155,218),(155,231),(155,297),(155,329),(155,330),(156,252),(156,256),(156,337),(156,339),(156,343),(157,253),(157,257),(157,337),(157,338),(157,342),(158,254),(158,258),(158,337),(158,340),(158,344),(159,255),(159,259),(159,337),(159,341),(159,345),(160,288),(160,331),(160,370),(161,288),(161,332),(161,371),(162,289),(162,334),(162,370),(163,289),(163,333),(163,371),(164,290),(164,331),(164,369),(165,291),(165,332),(165,369),(166,290),(166,334),(166,368),(167,291),(167,333),(167,368),(168,288),(168,335),(168,368),(169,289),(169,335),(169,369),(170,291),(170,336),(170,370),(171,290),(171,336),(171,371),(172,331),(172,354),(172,360),(173,332),(173,354),(173,361),(174,334),(174,355),(174,360),(175,333),(175,355),(175,361),(176,331),(176,356),(176,359),(177,332),(177,357),(177,359),(178,334),(178,356),(178,358),(179,333),(179,357),(179,358),(180,335),(180,354),(180,358),(181,335),(181,355),(181,359),(182,336),(182,357),(182,360),(183,336),(183,356),(183,361),(184,260),(184,298),(184,346),(184,364),(185,261),(185,299),(185,346),(185,365),(186,262),(186,301),(186,347),(186,364),(187,263),(187,300),(187,347),(187,365),(188,264),(188,301),(188,348),(188,362),(189,265),(189,300),(189,349),(189,362),(190,266),(190,298),(190,348),(190,363),(191,267),(191,299),(191,349),(191,363),(192,268),(192,302),(192,346),(192,362),(193,269),(193,302),(193,347),(193,363),(194,270),(194,303),(194,349),(194,364),(195,271),(195,303),(195,348),(195,365),(196,272),(196,299),(196,350),(196,364),(197,273),(197,298),(197,350),(197,365),(198,274),(198,300),(198,351),(198,364),(199,275),(199,301),(199,351),(199,365),(200,276),(200,299),(200,352),(200,362),(201,277),(201,298),(201,353),(201,362),(202,278),(202,300),(202,352),(202,363),(203,279),(203,301),(203,353),(203,363),(204,280),(204,303),(204,351),(204,362),(205,281),(205,303),(205,350),(205,363),(206,282),(206,302),(206,352),(206,365),(207,283),(207,302),(207,353),(207,364),(208,240),(208,298),(208,317),(208,367),(209,241),(209,299),(209,318),(209,367),(210,242),(210,300),(210,319),(210,367),(211,243),(211,301),(211,320),(211,367),(212,244),(212,302),(212,321),(212,367),(213,245),(213,303),(213,322),(213,367),(214,246),(214,300),(214,317),(214,366),(215,247),(215,301),(215,318),(215,366),(216,248),(216,298),(216,319),(216,366),(217,249),(217,299),(217,320),(217,366),(218,250),(218,303),(218,321),(218,366),(219,251),(219,302),(219,322),(219,366),(220,240),(220,273),(220,277),(220,311),(220,338),(220,341),(221,241),(221,272),(221,276),(221,312),(221,338),(221,340),(222,242),(222,274),(222,278),(222,313),(222,339),(222,340),(223,243),(223,275),(223,279),(223,314),(223,339),(223,341),(224,245),(224,280),(224,281),(224,315),(224,338),(224,339),(225,244),(225,282),(225,283),(225,316),(225,340),(225,341),(226,246),(226,263),(226,265),(226,311),(226,342),(226,345),(227,247),(227,262),(227,264),(227,312),(227,342),(227,344),(228,248),(228,260),(228,266),(228,313),(228,343),(228,344),(229,249),(229,261),(229,267),(229,314),(229,343),(229,345),(230,251),(230,268),(230,269),(230,315),(230,342),(230,343),(231,250),(231,270),(231,271),(231,316),(231,344),(231,345),(232,252),(232,284),(232,346),(232,367),(233,253),(233,285),(233,347),(233,367),(234,254),(234,286),(234,348),(234,367),(235,255),(235,287),(235,349),(235,367),(236,256),(236,284),(236,351),(236,366),(237,257),(237,285),(237,350),(237,366),(238,258),(238,286),(238,352),(238,366),(239,259),(239,287),(239,353),(239,366),(240,305),(240,331),(240,372),(241,306),(241,332),(241,372),(242,307),(242,333),(242,372),(243,308),(243,334),(243,372),(244,309),(244,335),(244,372),(245,310),(245,336),(245,372),(246,307),(246,331),(246,373),(247,308),(247,332),(247,373),(248,305),(248,333),(248,373),(249,306),(249,334),(249,373),(250,310),(250,335),(250,373),(251,309),(251,336),(251,373),(252,288),(252,354),(252,372),(253,289),(253,355),(253,372),(254,290),(254,356),(254,372),(255,291),(255,357),(255,372),(256,288),(256,359),(256,373),(257,289),(257,358),(257,373),(258,290),(258,360),(258,373),(259,291),(259,361),(259,373),(260,305),(260,354),(260,370),(261,306),(261,354),(261,371),(262,308),(262,355),(262,370),(263,307),(263,355),(263,371),(264,308),(264,356),(264,368),(265,307),(265,357),(265,368),(266,305),(266,356),(266,369),(267,306),(267,357),(267,369),(268,309),(268,354),(268,368),(269,309),(269,355),(269,369),(270,310),(270,357),(270,370),(271,310),(271,356),(271,371),(272,306),(272,358),(272,370),(273,305),(273,358),(273,371),(274,307),(274,359),(274,370),(275,308),(275,359),(275,371),(276,306),(276,360),(276,368),(277,305),(277,361),(277,368),(278,307),(278,360),(278,369),(279,308),(279,361),(279,369),(280,310),(280,359),(280,368),(281,310),(281,358),(281,369),(282,309),(282,360),(282,371),(283,309),(283,361),(283,370),(284,288),(284,374),(285,289),(285,374),(286,290),(286,374),(287,291),(287,374),(288,375),(289,375),(290,375),(291,375),(292,311),(292,317),(292,362),(292,365),(293,312),(293,318),(293,362),(293,364),(294,313),(294,319),(294,363),(294,364),(295,314),(295,320),(295,363),(295,365),(296,315),(296,322),(296,362),(296,363),(297,316),(297,321),(297,364),(297,365),(298,305),(298,374),(299,306),(299,374),(300,307),(300,374),(301,308),(301,374),(302,309),(302,374),(303,310),(303,374),(304,337),(304,366),(304,367),(305,375),(306,375),(307,375),(308,375),(309,375),(310,375),(311,331),(311,368),(311,371),(312,332),(312,368),(312,370),(313,333),(313,369),(313,370),(314,334),(314,369),(314,371),(315,336),(315,368),(315,369),(316,335),(316,370),(316,371),(317,331),(317,374),(318,332),(318,374),(319,333),(319,374),(320,334),(320,374),(321,335),(321,374),(322,336),(322,374),(323,338),(323,350),(323,362),(323,367),(324,339),(324,351),(324,363),(324,367),(325,340),(325,352),(325,364),(325,367),(326,341),(326,353),(326,365),(326,367),(327,342),(327,347),(327,362),(327,366),(328,343),(328,346),(328,363),(328,366),(329,344),(329,348),(329,364),(329,366),(330,345),(330,349),(330,365),(330,366),(331,375),(332,375),(333,375),(334,375),(335,375),(336,375),(337,372),(337,373),(338,358),(338,368),(338,372),(339,359),(339,369),(339,372),(340,360),(340,370),(340,372),(341,361),(341,371),(341,372),(342,355),(342,368),(342,373),(343,354),(343,369),(343,373),(344,356),(344,370),(344,373),(345,357),(345,371),(345,373),(346,354),(346,374),(347,355),(347,374),(348,356),(348,374),(349,357),(349,374),(350,358),(350,374),(351,359),(351,374),(352,360),(352,374),(353,361),(353,374),(354,375),(355,375),(356,375),(357,375),(358,375),(359,375),(360,375),(361,375),(362,368),(362,374),(363,369),(363,374),(364,370),(364,374),(365,371),(365,374),(366,373),(366,374),(367,372),(367,374),(368,375),(369,375),(370,375),(371,375),(372,375),(373,375),(374,375)],376)
=> ? = 1
[1,2,1,2,1] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,42),(1,43),(1,44),(1,57),(1,58),(1,59),(1,60),(1,61),(1,62),(1,63),(1,64),(1,65),(1,66),(2,26),(2,31),(2,32),(2,37),(2,38),(2,41),(2,47),(2,50),(2,66),(2,102),(2,103),(3,25),(3,28),(3,30),(3,34),(3,36),(3,40),(3,46),(3,49),(3,65),(3,101),(3,103),(4,24),(4,27),(4,29),(4,33),(4,35),(4,39),(4,45),(4,48),(4,64),(4,101),(4,102),(5,20),(5,29),(5,30),(5,47),(5,51),(5,52),(5,57),(5,137),(5,138),(5,143),(6,18),(6,27),(6,31),(6,46),(6,53),(6,55),(6,58),(6,137),(6,139),(6,144),(7,19),(7,28),(7,32),(7,45),(7,54),(7,56),(7,59),(7,138),(7,139),(7,145),(8,23),(8,35),(8,36),(8,50),(8,53),(8,54),(8,60),(8,140),(8,141),(8,143),(9,21),(9,33),(9,37),(9,49),(9,51),(9,56),(9,61),(9,140),(9,142),(9,144),(10,22),(10,34),(10,38),(10,48),(10,52),(10,55),(10,62),(10,141),(10,142),(10,145),(11,15),(11,16),(11,17),(11,24),(11,25),(11,26),(11,63),(11,143),(11,144),(11,145),(12,15),(12,19),(12,22),(12,39),(12,42),(12,73),(12,103),(12,137),(12,140),(13,16),(13,18),(13,21),(13,40),(13,43),(13,73),(13,102),(13,138),(13,141),(14,17),(14,20),(14,23),(14,41),(14,44),(14,73),(14,101),(14,139),(14,142),(15,116),(15,125),(15,149),(15,188),(15,197),(15,283),(16,117),(16,126),(16,150),(16,188),(16,196),(16,284),(17,118),(17,127),(17,151),(17,188),(17,195),(17,285),(18,120),(18,128),(18,150),(18,190),(18,198),(18,282),(19,119),(19,129),(19,149),(19,191),(19,199),(19,282),(20,121),(20,130),(20,151),(20,189),(20,200),(20,282),(21,123),(21,131),(21,150),(21,193),(21,202),(21,281),(22,122),(22,132),(22,149),(22,194),(22,201),(22,281),(23,124),(23,133),(23,151),(23,192),(23,203),(23,281),(24,86),(24,116),(24,152),(24,154),(24,158),(24,195),(24,196),(25,87),(25,117),(25,153),(25,155),(25,159),(25,195),(25,197),(26,88),(26,118),(26,156),(26,157),(26,160),(26,196),(26,197),(27,67),(27,82),(27,89),(27,152),(27,190),(27,204),(27,263),(28,68),(28,83),(28,90),(28,153),(28,191),(28,205),(28,263),(29,69),(29,80),(29,91),(29,154),(29,189),(29,204),(29,264),(30,70),(30,81),(30,92),(30,155),(30,189),(30,205),(30,265),(31,71),(31,85),(31,93),(31,156),(31,190),(31,206),(31,265),(32,72),(32,84),(32,94),(32,157),(32,191),(32,206),(32,264),(33,69),(33,76),(33,95),(33,152),(33,193),(33,207),(33,266),(34,70),(34,77),(34,96),(34,153),(34,194),(34,208),(34,266),(35,67),(35,74),(35,97),(35,154),(35,192),(35,207),(35,267),(36,68),(36,75),(36,98),(36,155),(36,192),(36,208),(36,268),(37,72),(37,79),(37,99),(37,156),(37,193),(37,209),(37,268),(38,71),(38,78),(38,100),(38,157),(38,194),(38,209),(38,267),(39,116),(39,119),(39,122),(39,134),(39,204),(39,207),(39,301),(40,117),(40,120),(40,123),(40,135),(40,205),(40,208),(40,301),(41,118),(41,121),(41,124),(41,136),(41,206),(41,209),(41,301),(42,125),(42,129),(42,132),(42,134),(42,210),(42,213),(42,218),(42,219),(43,126),(43,128),(43,131),(43,135),(43,211),(43,214),(43,217),(43,219),(44,127),(44,130),(44,133),(44,136),(44,212),(44,215),(44,216),(44,219),(45,74),(45,76),(45,104),(45,119),(45,158),(45,263),(45,264),(46,75),(46,77),(46,105),(46,120),(46,159),(46,263),(46,265),(47,78),(47,79),(47,106),(47,121),(47,160),(47,264),(47,265),(48,80),(48,82),(48,107),(48,122),(48,158),(48,266),(48,267),(49,81),(49,83),(49,108),(49,123),(49,159),(49,266),(49,268),(50,84),(50,85),(50,109),(50,124),(50,160),(50,267),(50,268),(51,69),(51,79),(51,81),(51,110),(51,200),(51,202),(51,283),(52,70),(52,78),(52,80),(52,111),(52,200),(52,201),(52,284),(53,67),(53,75),(53,85),(53,112),(53,198),(53,203),(53,283),(54,68),(54,74),(54,84),(54,113),(54,199),(54,203),(54,284),(55,71),(55,77),(55,82),(55,114),(55,198),(55,201),(55,285),(56,72),(56,76),(56,83),(56,115),(56,199),(56,202),(56,285),(57,91),(57,92),(57,106),(57,110),(57,111),(57,130),(57,148),(57,210),(57,211),(58,89),(58,93),(58,105),(58,112),(58,114),(58,128),(58,147),(58,210),(58,212),(59,90),(59,94),(59,104),(59,113),(59,115),(59,129),(59,146),(59,211),(59,212),(60,97),(60,98),(60,109),(60,112),(60,113),(60,133),(60,148),(60,213),(60,214),(61,95),(61,99),(61,108),(61,110),(61,115),(61,131),(61,147),(61,213),(61,215),(62,96),(62,100),(62,107),(62,111),(62,114),(62,132),(62,146),(62,214),(62,215),(63,86),(63,87),(63,88),(63,125),(63,126),(63,127),(63,146),(63,147),(63,148),(64,86),(64,89),(64,91),(64,95),(64,97),(64,104),(64,107),(64,134),(64,216),(64,217),(65,87),(65,90),(65,92),(65,96),(65,98),(65,105),(65,108),(65,135),(65,216),(65,218),(66,88),(66,93),(66,94),(66,99),(66,100),(66,106),(66,109),(66,136),(66,217),(66,218),(67,164),(67,296),(67,298),(67,305),(68,165),(68,297),(68,298),(68,306),(69,166),(69,295),(69,299),(69,305),(70,167),(70,295),(70,300),(70,306),(71,168),(71,296),(71,300),(71,307),(72,169),(72,297),(72,299),(72,307),(73,188),(73,219),(73,281),(73,282),(73,301),(74,176),(74,236),(74,298),(74,323),(75,177),(75,237),(75,298),(75,324),(76,178),(76,236),(76,299),(76,322),(77,179),(77,237),(77,300),(77,322),(78,180),(78,238),(78,300),(78,323),(79,181),(79,238),(79,299),(79,324),(80,182),(80,239),(80,295),(80,323),(81,183),(81,240),(81,295),(81,324),(82,184),(82,239),(82,296),(82,322),(83,185),(83,240),(83,297),(83,322),(84,186),(84,241),(84,297),(84,323),(85,187),(85,241),(85,296),(85,324),(86,161),(86,227),(86,228),(86,254),(86,257),(86,259),(87,162),(87,227),(87,229),(87,255),(87,258),(87,260),(88,163),(88,228),(88,229),(88,256),(88,261),(88,262),(89,164),(89,184),(89,220),(89,231),(89,257),(89,286),(90,165),(90,185),(90,221),(90,232),(90,258),(90,286),(91,166),(91,182),(91,220),(91,230),(91,259),(91,287),(92,167),(92,183),(92,221),(92,230),(92,260),(92,288),(93,168),(93,187),(93,222),(93,231),(93,261),(93,288),(94,169),(94,186),(94,222),(94,232),(94,262),(94,287),(95,166),(95,178),(95,223),(95,234),(95,257),(95,289),(96,167),(96,179),(96,224),(96,235),(96,258),(96,289),(97,164),(97,176),(97,223),(97,233),(97,259),(97,290),(98,165),(98,177),(98,224),(98,233),(98,260),(98,291),(99,169),(99,181),(99,225),(99,234),(99,261),(99,291),(100,168),(100,180),(100,225),(100,235),(100,262),(100,290),(101,189),(101,192),(101,195),(101,216),(101,263),(101,266),(101,301),(102,190),(102,193),(102,196),(102,217),(102,264),(102,267),(102,301),(103,191),(103,194),(103,197),(103,218),(103,265),(103,268),(103,301),(104,170),(104,176),(104,178),(104,254),(104,286),(104,287),(105,171),(105,177),(105,179),(105,255),(105,286),(105,288),(106,172),(106,180),(106,181),(106,256),(106,287),(106,288),(107,173),(107,182),(107,184),(107,254),(107,289),(107,290),(108,174),(108,183),(108,185),(108,255),(108,289),(108,291),(109,175),(109,186),(109,187),(109,256),(109,290),(109,291),(110,166),(110,181),(110,183),(110,244),(110,246),(110,308),(111,167),(111,180),(111,182),(111,244),(111,245),(111,309),(112,164),(112,177),(112,187),(112,242),(112,247),(112,308),(113,165),(113,176),(113,186),(113,243),(113,247),(113,309),(114,168),(114,179),(114,184),(114,242),(114,245),(114,310),(115,169),(115,178),(115,185),(115,243),(115,246),(115,310),(116,161),(116,248),(116,305),(116,311),(117,162),(117,249),(117,306),(117,311),(118,163),(118,250),(118,307),(118,311),(119,170),(119,236),(119,248),(119,328),(120,171),(120,237),(120,249),(120,328),(121,172),(121,238),(121,250),(121,328),(122,173),(122,239),(122,248),(122,329),(123,174),(123,240),(123,249),(123,329),(124,175),(124,241),(124,250),(124,329),(125,161),(125,226),(125,229),(125,251),(125,308),(126,162),(126,226),(126,228),(126,252),(126,309),(127,163),(127,226),(127,227),(127,253),(127,310),(128,171),(128,231),(128,242),(128,252),(128,303),(129,170),(129,232),(129,243),(129,251),(129,303),(130,172),(130,230),(130,244),(130,253),(130,303),(131,174),(131,234),(131,246),(131,252),(131,304),(132,173),(132,235),(132,245),(132,251),(132,304),(133,175),(133,233),(133,247),(133,253),(133,304),(134,161),(134,170),(134,173),(134,220),(134,223),(134,302),(135,162),(135,171),(135,174),(135,221),(135,224),(135,302),(136,163),(136,172),(136,175),(136,222),(136,225),(136,302),(137,201),(137,204),(137,210),(137,265),(137,282),(137,283),(138,202),(138,205),(138,211),(138,264),(138,282),(138,284),(139,203),(139,206),(139,212),(139,263),(139,282),(139,285),(140,199),(140,207),(140,213),(140,268),(140,281),(140,283),(141,198),(141,208),(141,214),(141,267),(141,281),(141,284),(142,200),(142,209),(142,215),(142,266),(142,281),(142,285),(143,148),(143,151),(143,154),(143,155),(143,160),(143,283),(143,284),(144,147),(144,150),(144,152),(144,156),(144,159),(144,283),(144,285),(145,146),(145,149),(145,153),(145,157),(145,158),(145,284),(145,285),(146,251),(146,254),(146,258),(146,262),(146,309),(146,310),(147,252),(147,255),(147,257),(147,261),(147,308),(147,310),(148,253),(148,256),(148,259),(148,260),(148,308),(148,309),(149,248),(149,251),(149,280),(149,332),(150,249),(150,252),(150,279),(150,332),(151,250),(151,253),(151,278),(151,332),(152,257),(152,279),(152,305),(152,322),(153,258),(153,280),(153,306),(153,322),(154,259),(154,278),(154,305),(154,323),(155,260),(155,278),(155,306),(155,324),(156,261),(156,279),(156,307),(156,324),(157,262),(157,280),(157,307),(157,323),(158,248),(158,254),(158,322),(158,323),(159,249),(159,255),(159,322),(159,324),(160,250),(160,256),(160,323),(160,324),(161,269),(161,318),(161,321),(162,270),(162,319),(162,321),(163,271),(163,320),(163,321),(164,313),(164,315),(164,318),(165,314),(165,315),(165,319),(166,312),(166,316),(166,318),(167,312),(167,317),(167,319),(168,313),(168,317),(168,320),(169,314),(169,316),(169,320),(170,269),(170,272),(170,330),(171,270),(171,273),(171,330),(172,271),(172,274),(172,330),(173,269),(173,275),(173,331),(174,270),(174,276),(174,331),(175,271),(175,277),(175,331),(176,272),(176,315),(176,325),(177,273),(177,315),(177,326),(178,272),(178,316),(178,327),(179,273),(179,317),(179,327),(180,274),(180,317),(180,325),(181,274),(181,316),(181,326),(182,275),(182,312),(182,325),(183,276),(183,312),(183,326),(184,275),(184,313),(184,327),(185,276),(185,314),(185,327),(186,277),(186,314),(186,325),(187,277),(187,313),(187,326),(188,226),(188,311),(188,332),(189,230),(189,278),(189,295),(189,328),(190,231),(190,279),(190,296),(190,328),(191,232),(191,280),(191,297),(191,328),(192,233),(192,278),(192,298),(192,329),(193,234),(193,279),(193,299),(193,329),(194,235),(194,280),(194,300),(194,329),(195,227),(195,278),(195,311),(195,322),(196,228),(196,279),(196,311),(196,323),(197,229),(197,280),(197,311),(197,324),(198,237),(198,242),(198,296),(198,332),(199,236),(199,243),(199,297),(199,332),(200,238),(200,244),(200,295),(200,332),(201,239),(201,245),(201,300),(201,332),(202,240),(202,246),(202,299),(202,332),(203,241),(203,247),(203,298),(203,332),(204,220),(204,239),(204,305),(204,328),(205,221),(205,240),(205,306),(205,328),(206,222),(206,241),(206,307),(206,328),(207,223),(207,236),(207,305),(207,329),(208,224),(208,237),(208,306),(208,329),(209,225),(209,238),(209,307),(209,329),(210,220),(210,245),(210,288),(210,303),(210,308),(211,221),(211,246),(211,287),(211,303),(211,309),(212,222),(212,247),(212,286),(212,303),(212,310),(213,223),(213,243),(213,291),(213,304),(213,308),(214,224),(214,242),(214,290),(214,304),(214,309),(215,225),(215,244),(215,289),(215,304),(215,310),(216,227),(216,230),(216,233),(216,286),(216,289),(216,302),(217,228),(217,231),(217,234),(217,287),(217,290),(217,302),(218,229),(218,232),(218,235),(218,288),(218,291),(218,302),(219,226),(219,302),(219,303),(219,304),(220,275),(220,318),(220,330),(221,276),(221,319),(221,330),(222,277),(222,320),(222,330),(223,272),(223,318),(223,331),(224,273),(224,319),(224,331),(225,274),(225,320),(225,331),(226,321),(226,333),(227,294),(227,321),(227,327),(228,292),(228,321),(228,325),(229,293),(229,321),(229,326),(230,294),(230,312),(230,330),(231,292),(231,313),(231,330),(232,293),(232,314),(232,330),(233,294),(233,315),(233,331),(234,292),(234,316),(234,331),(235,293),(235,317),(235,331),(236,272),(236,334),(237,273),(237,334),(238,274),(238,334),(239,275),(239,334),(240,276),(240,334),(241,277),(241,334),(242,273),(242,313),(242,333),(243,272),(243,314),(243,333),(244,274),(244,312),(244,333),(245,275),(245,317),(245,333),(246,276),(246,316),(246,333),(247,277),(247,315),(247,333),(248,269),(248,334),(249,270),(249,334),(250,271),(250,334),(251,269),(251,293),(251,333),(252,270),(252,292),(252,333),(253,271),(253,294),(253,333),(254,269),(254,325),(254,327),(255,270),(255,326),(255,327),(256,271),(256,325),(256,326),(257,292),(257,318),(257,327),(258,293),(258,319),(258,327),(259,294),(259,318),(259,325),(260,294),(260,319),(260,326),(261,292),(261,320),(261,326),(262,293),(262,320),(262,325),(263,286),(263,298),(263,322),(263,328),(264,287),(264,299),(264,323),(264,328),(265,288),(265,300),(265,324),(265,328),(266,289),(266,295),(266,322),(266,329),(267,290),(267,296),(267,323),(267,329),(268,291),(268,297),(268,324),(268,329),(269,335),(270,335),(271,335),(272,335),(273,335),(274,335),(275,335),(276,335),(277,335),(278,294),(278,334),(279,292),(279,334),(280,293),(280,334),(281,304),(281,329),(281,332),(282,303),(282,328),(282,332),(283,305),(283,308),(283,324),(283,332),(284,306),(284,309),(284,323),(284,332),(285,307),(285,310),(285,322),(285,332),(286,315),(286,327),(286,330),(287,316),(287,325),(287,330),(288,317),(288,326),(288,330),(289,312),(289,327),(289,331),(290,313),(290,325),(290,331),(291,314),(291,326),(291,331),(292,335),(293,335),(294,335),(295,312),(295,334),(296,313),(296,334),(297,314),(297,334),(298,315),(298,334),(299,316),(299,334),(300,317),(300,334),(301,302),(301,311),(301,328),(301,329),(302,321),(302,330),(302,331),(303,330),(303,333),(304,331),(304,333),(305,318),(305,334),(306,319),(306,334),(307,320),(307,334),(308,318),(308,326),(308,333),(309,319),(309,325),(309,333),(310,320),(310,327),(310,333),(311,321),(311,334),(312,335),(313,335),(314,335),(315,335),(316,335),(317,335),(318,335),(319,335),(320,335),(321,335),(322,327),(322,334),(323,325),(323,334),(324,326),(324,334),(325,335),(326,335),(327,335),(328,330),(328,334),(329,331),(329,334),(330,335),(331,335),(332,333),(332,334),(333,335),(334,335)],336)
=> ? = 1
[1,2,1,3] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,14),(1,15),(1,16),(1,53),(1,54),(1,55),(1,56),(1,57),(1,58),(1,59),(1,60),(1,61),(2,19),(2,30),(2,31),(2,36),(2,37),(2,45),(2,46),(2,55),(2,140),(2,143),(3,18),(3,27),(3,29),(3,33),(3,35),(3,44),(3,46),(3,54),(3,139),(3,142),(4,17),(4,26),(4,28),(4,32),(4,34),(4,44),(4,45),(4,53),(4,138),(4,141),(5,22),(5,28),(5,29),(5,38),(5,39),(5,47),(5,48),(5,56),(5,135),(5,143),(6,21),(6,26),(6,30),(6,40),(6,42),(6,47),(6,49),(6,57),(6,136),(6,142),(7,20),(7,27),(7,31),(7,41),(7,43),(7,48),(7,49),(7,58),(7,137),(7,141),(8,25),(8,34),(8,35),(8,40),(8,41),(8,50),(8,51),(8,59),(8,135),(8,140),(9,24),(9,32),(9,36),(9,38),(9,43),(9,50),(9,52),(9,60),(9,136),(9,139),(10,23),(10,33),(10,37),(10,39),(10,42),(10,51),(10,52),(10,61),(10,137),(10,138),(11,16),(11,23),(11,24),(11,25),(11,62),(11,141),(11,142),(11,143),(12,15),(12,20),(12,21),(12,22),(12,62),(12,138),(12,139),(12,140),(13,14),(13,17),(13,18),(13,19),(13,62),(13,135),(13,136),(13,137),(14,75),(14,76),(14,77),(14,144),(14,184),(14,185),(14,186),(15,78),(15,79),(15,80),(15,144),(15,187),(15,188),(15,189),(16,81),(16,82),(16,83),(16,144),(16,190),(16,191),(16,192),(17,63),(17,64),(17,75),(17,193),(17,195),(17,259),(18,63),(18,65),(18,76),(18,194),(18,196),(18,260),(19,64),(19,65),(19,77),(19,197),(19,198),(19,261),(20,66),(20,68),(20,78),(20,202),(20,203),(20,259),(21,67),(21,68),(21,79),(21,201),(21,204),(21,260),(22,66),(22,67),(22,80),(22,199),(22,200),(22,261),(23,69),(23,71),(23,81),(23,208),(23,209),(23,259),(24,70),(24,71),(24,82),(24,207),(24,210),(24,260),(25,69),(25,70),(25,83),(25,205),(25,206),(25,261),(26,93),(26,112),(26,114),(26,129),(26,193),(26,201),(26,256),(27,94),(27,113),(27,115),(27,130),(27,194),(27,202),(27,256),(28,95),(28,111),(28,114),(28,131),(28,195),(28,199),(28,257),(29,96),(29,111),(29,115),(29,132),(29,196),(29,200),(29,258),(30,97),(30,112),(30,116),(30,133),(30,197),(30,204),(30,258),(31,98),(31,113),(31,116),(31,134),(31,198),(31,203),(31,257),(32,99),(32,118),(32,123),(32,131),(32,193),(32,207),(32,253),(33,100),(33,119),(33,124),(33,132),(33,194),(33,208),(33,253),(34,101),(34,117),(34,123),(34,129),(34,195),(34,205),(34,254),(35,102),(35,117),(35,124),(35,130),(35,196),(35,206),(35,255),(36,103),(36,118),(36,125),(36,134),(36,197),(36,210),(36,255),(37,104),(37,119),(37,125),(37,133),(37,198),(37,209),(37,254),(38,105),(38,121),(38,128),(38,131),(38,200),(38,210),(38,251),(39,106),(39,120),(39,128),(39,132),(39,199),(39,209),(39,250),(40,107),(40,122),(40,126),(40,129),(40,204),(40,206),(40,251),(41,108),(41,122),(41,127),(41,130),(41,203),(41,205),(41,250),(42,109),(42,120),(42,126),(42,133),(42,201),(42,208),(42,252),(43,110),(43,121),(43,127),(43,134),(43,202),(43,207),(43,252),(44,63),(44,72),(44,86),(44,111),(44,117),(44,253),(44,256),(45,64),(45,72),(45,84),(45,112),(45,118),(45,254),(45,257),(46,65),(46,72),(46,85),(46,113),(46,119),(46,255),(46,258),(47,67),(47,73),(47,87),(47,114),(47,120),(47,251),(47,258),(48,66),(48,73),(48,88),(48,115),(48,121),(48,250),(48,257),(49,68),(49,73),(49,89),(49,116),(49,122),(49,252),(49,256),(50,70),(50,74),(50,90),(50,123),(50,127),(50,251),(50,255),(51,69),(51,74),(51,91),(51,124),(51,126),(51,250),(51,254),(52,71),(52,74),(52,92),(52,125),(52,128),(52,252),(52,253),(53,75),(53,84),(53,86),(53,93),(53,95),(53,99),(53,101),(53,187),(53,190),(54,76),(54,85),(54,86),(54,94),(54,96),(54,100),(54,102),(54,188),(54,191),(55,77),(55,84),(55,85),(55,97),(55,98),(55,103),(55,104),(55,189),(55,192),(56,80),(56,87),(56,88),(56,95),(56,96),(56,105),(56,106),(56,184),(56,192),(57,79),(57,87),(57,89),(57,93),(57,97),(57,107),(57,109),(57,185),(57,191),(58,78),(58,88),(58,89),(58,94),(58,98),(58,108),(58,110),(58,186),(58,190),(59,83),(59,90),(59,91),(59,101),(59,102),(59,107),(59,108),(59,184),(59,189),(60,82),(60,90),(60,92),(60,99),(60,103),(60,105),(60,110),(60,185),(60,188),(61,81),(61,91),(61,92),(61,100),(61,104),(61,106),(61,109),(61,186),(61,187),(62,144),(62,259),(62,260),(62,261),(63,145),(63,159),(63,213),(63,300),(64,145),(64,157),(64,211),(64,298),(65,145),(65,158),(65,212),(65,299),(66,146),(66,160),(66,215),(66,298),(67,146),(67,161),(67,214),(67,299),(68,146),(68,162),(68,216),(68,300),(69,147),(69,163),(69,218),(69,298),(70,147),(70,164),(70,217),(70,299),(71,147),(71,165),(71,219),(71,300),(72,145),(72,148),(72,293),(72,294),(73,146),(73,149),(73,292),(73,294),(74,147),(74,150),(74,292),(74,293),(75,157),(75,159),(75,220),(75,222),(75,280),(76,158),(76,159),(76,221),(76,223),(76,281),(77,157),(77,158),(77,224),(77,225),(77,282),(78,160),(78,162),(78,229),(78,230),(78,280),(79,161),(79,162),(79,228),(79,231),(79,281),(80,160),(80,161),(80,226),(80,227),(80,282),(81,163),(81,165),(81,235),(81,236),(81,280),(82,164),(82,165),(82,234),(82,237),(82,281),(83,163),(83,164),(83,232),(83,233),(83,282),(84,148),(84,157),(84,167),(84,173),(84,275),(84,278),(85,148),(85,158),(85,168),(85,174),(85,276),(85,279),(86,148),(86,159),(86,166),(86,172),(86,274),(86,277),(87,149),(87,161),(87,169),(87,175),(87,272),(87,279),(88,149),(88,160),(88,170),(88,176),(88,271),(88,278),(89,149),(89,162),(89,171),(89,177),(89,273),(89,277),(90,150),(90,164),(90,178),(90,182),(90,272),(90,276),(91,150),(91,163),(91,179),(91,181),(91,271),(91,275),(92,150),(92,165),(92,180),(92,183),(92,273),(92,274),(93,151),(93,167),(93,169),(93,220),(93,228),(93,277),(94,152),(94,168),(94,170),(94,221),(94,229),(94,277),(95,153),(95,166),(95,169),(95,222),(95,226),(95,278),(96,154),(96,166),(96,170),(96,223),(96,227),(96,279),(97,155),(97,167),(97,171),(97,224),(97,231),(97,279),(98,156),(98,168),(98,171),(98,225),(98,230),(98,278),(99,153),(99,173),(99,178),(99,220),(99,234),(99,274),(100,154),(100,174),(100,179),(100,221),(100,235),(100,274),(101,151),(101,172),(101,178),(101,222),(101,232),(101,275),(102,152),(102,172),(102,179),(102,223),(102,233),(102,276),(103,156),(103,173),(103,180),(103,224),(103,237),(103,276),(104,155),(104,174),(104,180),(104,225),(104,236),(104,275),(105,153),(105,176),(105,183),(105,227),(105,237),(105,272),(106,154),(106,175),(106,183),(106,226),(106,236),(106,271),(107,151),(107,177),(107,181),(107,231),(107,233),(107,272),(108,152),(108,177),(108,182),(108,230),(108,232),(108,271),(109,155),(109,175),(109,181),(109,228),(109,235),(109,273),(110,156),(110,176),(110,182),(110,229),(110,234),(110,273),(111,166),(111,213),(111,267),(111,294),(112,167),(112,211),(112,265),(112,294),(113,168),(113,212),(113,266),(113,294),(114,169),(114,214),(114,262),(114,294),(115,170),(115,215),(115,263),(115,294),(116,171),(116,216),(116,264),(116,294),(117,172),(117,213),(117,268),(117,293),(118,173),(118,211),(118,269),(118,293),(119,174),(119,212),(119,270),(119,293),(120,175),(120,214),(120,270),(120,292),(121,176),(121,215),(121,269),(121,292),(122,177),(122,216),(122,268),(122,292),(123,178),(123,217),(123,262),(123,293),(124,179),(124,218),(124,263),(124,293),(125,180),(125,219),(125,264),(125,293),(126,181),(126,218),(126,265),(126,292),(127,182),(127,217),(127,266),(127,292),(128,183),(128,219),(128,267),(128,292),(129,151),(129,262),(129,265),(129,268),(130,152),(130,263),(130,266),(130,268),(131,153),(131,262),(131,267),(131,269),(132,154),(132,263),(132,267),(132,270),(133,155),(133,264),(133,265),(133,270),(134,156),(134,264),(134,266),(134,269),(135,184),(135,195),(135,196),(135,250),(135,251),(135,261),(136,185),(136,193),(136,197),(136,251),(136,252),(136,260),(137,186),(137,194),(137,198),(137,250),(137,252),(137,259),(138,187),(138,199),(138,201),(138,253),(138,254),(138,259),(139,188),(139,200),(139,202),(139,253),(139,255),(139,260),(140,189),(140,203),(140,204),(140,254),(140,255),(140,261),(141,190),(141,205),(141,207),(141,256),(141,257),(141,259),(142,191),(142,206),(142,208),(142,256),(142,258),(142,260),(143,192),(143,209),(143,210),(143,257),(143,258),(143,261),(144,280),(144,281),(144,282),(145,238),(145,304),(146,239),(146,304),(147,240),(147,304),(148,238),(148,296),(148,297),(149,239),(149,295),(149,297),(150,240),(150,295),(150,296),(151,283),(151,287),(151,289),(152,284),(152,288),(152,289),(153,283),(153,286),(153,290),(154,284),(154,286),(154,291),(155,285),(155,287),(155,291),(156,285),(156,288),(156,290),(157,238),(157,241),(157,301),(158,238),(158,242),(158,302),(159,238),(159,243),(159,303),(160,239),(160,245),(160,301),(161,239),(161,244),(161,302),(162,239),(162,246),(162,303),(163,240),(163,248),(163,301),(164,240),(164,247),(164,302),(165,240),(165,249),(165,303),(166,243),(166,286),(166,297),(167,241),(167,287),(167,297),(168,242),(168,288),(168,297),(169,244),(169,283),(169,297),(170,245),(170,284),(170,297),(171,246),(171,285),(171,297),(172,243),(172,289),(172,296),(173,241),(173,290),(173,296),(174,242),(174,291),(174,296),(175,244),(175,291),(175,295),(176,245),(176,290),(176,295),(177,246),(177,289),(177,295),(178,247),(178,283),(178,296),(179,248),(179,284),(179,296),(180,249),(180,285),(180,296),(181,248),(181,287),(181,295),(182,247),(182,288),(182,295),(183,249),(183,286),(183,295),(184,222),(184,223),(184,271),(184,272),(184,282),(185,220),(185,224),(185,272),(185,273),(185,281),(186,221),(186,225),(186,271),(186,273),(186,280),(187,226),(187,228),(187,274),(187,275),(187,280),(188,227),(188,229),(188,274),(188,276),(188,281),(189,230),(189,231),(189,275),(189,276),(189,282),(190,232),(190,234),(190,277),(190,278),(190,280),(191,233),(191,235),(191,277),(191,279),(191,281),(192,236),(192,237),(192,278),(192,279),(192,282),(193,211),(193,220),(193,262),(193,300),(194,212),(194,221),(194,263),(194,300),(195,213),(195,222),(195,262),(195,298),(196,213),(196,223),(196,263),(196,299),(197,211),(197,224),(197,264),(197,299),(198,212),(198,225),(198,264),(198,298),(199,214),(199,226),(199,267),(199,298),(200,215),(200,227),(200,267),(200,299),(201,214),(201,228),(201,265),(201,300),(202,215),(202,229),(202,266),(202,300),(203,216),(203,230),(203,266),(203,298),(204,216),(204,231),(204,265),(204,299),(205,217),(205,232),(205,268),(205,298),(206,218),(206,233),(206,268),(206,299),(207,217),(207,234),(207,269),(207,300),(208,218),(208,235),(208,270),(208,300),(209,219),(209,236),(209,270),(209,298),(210,219),(210,237),(210,269),(210,299),(211,241),(211,304),(212,242),(212,304),(213,243),(213,304),(214,244),(214,304),(215,245),(215,304),(216,246),(216,304),(217,247),(217,304),(218,248),(218,304),(219,249),(219,304),(220,241),(220,283),(220,303),(221,242),(221,284),(221,303),(222,243),(222,283),(222,301),(223,243),(223,284),(223,302),(224,241),(224,285),(224,302),(225,242),(225,285),(225,301),(226,244),(226,286),(226,301),(227,245),(227,286),(227,302),(228,244),(228,287),(228,303),(229,245),(229,288),(229,303),(230,246),(230,288),(230,301),(231,246),(231,287),(231,302),(232,247),(232,289),(232,301),(233,248),(233,289),(233,302),(234,247),(234,290),(234,303),(235,248),(235,291),(235,303),(236,249),(236,291),(236,301),(237,249),(237,290),(237,302),(238,305),(239,305),(240,305),(241,305),(242,305),(243,305),(244,305),(245,305),(246,305),(247,305),(248,305),(249,305),(250,263),(250,271),(250,292),(250,298),(251,262),(251,272),(251,292),(251,299),(252,264),(252,273),(252,292),(252,300),(253,267),(253,274),(253,293),(253,300),(254,265),(254,275),(254,293),(254,298),(255,266),(255,276),(255,293),(255,299),(256,268),(256,277),(256,294),(256,300),(257,269),(257,278),(257,294),(257,298),(258,270),(258,279),(258,294),(258,299),(259,280),(259,298),(259,300),(260,281),(260,299),(260,300),(261,282),(261,298),(261,299),(262,283),(262,304),(263,284),(263,304),(264,285),(264,304),(265,287),(265,304),(266,288),(266,304),(267,286),(267,304),(268,289),(268,304),(269,290),(269,304),(270,291),(270,304),(271,284),(271,295),(271,301),(272,283),(272,295),(272,302),(273,285),(273,295),(273,303),(274,286),(274,296),(274,303),(275,287),(275,296),(275,301),(276,288),(276,296),(276,302),(277,289),(277,297),(277,303),(278,290),(278,297),(278,301),(279,291),(279,297),(279,302),(280,301),(280,303),(281,302),(281,303),(282,301),(282,302),(283,305),(284,305),(285,305),(286,305),(287,305),(288,305),(289,305),(290,305),(291,305),(292,295),(292,304),(293,296),(293,304),(294,297),(294,304),(295,305),(296,305),(297,305),(298,301),(298,304),(299,302),(299,304),(300,303),(300,304),(301,305),(302,305),(303,305),(304,305)],306)
=> ? = 1
[1,2,2,1,1] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,17),(1,48),(1,49),(1,50),(1,51),(1,52),(1,53),(1,54),(1,55),(1,56),(1,57),(1,58),(2,21),(2,22),(2,23),(2,42),(2,43),(2,44),(2,45),(2,46),(2,47),(2,58),(2,80),(3,18),(3,19),(3,20),(3,36),(3,37),(3,38),(3,39),(3,40),(3,41),(3,57),(3,80),(4,16),(4,20),(4,23),(4,32),(4,35),(4,50),(4,122),(4,125),(4,126),(5,15),(5,19),(5,22),(5,31),(5,34),(5,49),(5,121),(5,124),(5,126),(6,14),(6,18),(6,21),(6,30),(6,33),(6,48),(6,120),(6,123),(6,126),(7,25),(7,28),(7,30),(7,36),(7,42),(7,51),(7,117),(7,121),(7,122),(8,24),(8,29),(8,31),(8,37),(8,43),(8,52),(8,118),(8,120),(8,122),(9,26),(9,27),(9,32),(9,38),(9,44),(9,53),(9,119),(9,120),(9,121),(10,27),(10,29),(10,33),(10,39),(10,45),(10,54),(10,117),(10,124),(10,125),(11,26),(11,28),(11,34),(11,40),(11,46),(11,55),(11,118),(11,123),(11,125),(12,24),(12,25),(12,35),(12,41),(12,47),(12,56),(12,119),(12,123),(12,124),(13,14),(13,15),(13,16),(13,17),(13,80),(13,117),(13,118),(13,119),(14,59),(14,128),(14,132),(14,180),(14,251),(15,60),(15,128),(15,133),(15,181),(15,252),(16,61),(16,128),(16,134),(16,182),(16,253),(17,59),(17,60),(17,61),(17,127),(17,171),(17,172),(17,173),(18,62),(18,81),(18,84),(18,129),(18,132),(18,159),(18,162),(19,63),(19,82),(19,85),(19,129),(19,133),(19,160),(19,163),(20,64),(20,83),(20,86),(20,129),(20,134),(20,161),(20,164),(21,65),(21,87),(21,90),(21,130),(21,132),(21,165),(21,168),(22,66),(22,88),(22,91),(22,130),(22,133),(22,166),(22,169),(23,67),(23,89),(23,92),(23,130),(23,134),(23,167),(23,170),(24,93),(24,99),(24,111),(24,184),(24,188),(24,251),(25,94),(25,100),(25,112),(25,183),(25,188),(25,252),(26,95),(26,101),(26,113),(26,185),(26,187),(26,251),(27,96),(27,102),(27,114),(27,185),(27,186),(27,252),(28,97),(28,103),(28,115),(28,183),(28,187),(28,253),(29,98),(29,104),(29,116),(29,184),(29,186),(29,253),(30,81),(30,87),(30,105),(30,180),(30,183),(30,255),(31,82),(31,88),(31,106),(31,181),(31,184),(31,255),(32,83),(32,89),(32,107),(32,182),(32,185),(32,255),(33,84),(33,90),(33,108),(33,180),(33,186),(33,254),(34,85),(34,91),(34,109),(34,181),(34,187),(34,254),(35,86),(35,92),(35,110),(35,182),(35,188),(35,254),(36,68),(36,81),(36,94),(36,97),(36,160),(36,161),(36,228),(37,69),(37,82),(37,93),(37,98),(37,159),(37,161),(37,229),(38,70),(38,83),(38,95),(38,96),(38,159),(38,160),(38,230),(39,71),(39,84),(39,96),(39,98),(39,163),(39,164),(39,228),(40,72),(40,85),(40,95),(40,97),(40,162),(40,164),(40,229),(41,73),(41,86),(41,93),(41,94),(41,162),(41,163),(41,230),(42,74),(42,87),(42,100),(42,103),(42,166),(42,167),(42,228),(43,75),(43,88),(43,99),(43,104),(43,165),(43,167),(43,229),(44,76),(44,89),(44,101),(44,102),(44,165),(44,166),(44,230),(45,77),(45,90),(45,102),(45,104),(45,169),(45,170),(45,228),(46,78),(46,91),(46,101),(46,103),(46,168),(46,170),(46,229),(47,79),(47,92),(47,99),(47,100),(47,168),(47,169),(47,230),(48,59),(48,62),(48,65),(48,105),(48,108),(48,131),(48,174),(48,177),(49,60),(49,63),(49,66),(49,106),(49,109),(49,131),(49,175),(49,178),(50,61),(50,64),(50,67),(50,107),(50,110),(50,131),(50,176),(50,179),(51,68),(51,74),(51,105),(51,112),(51,115),(51,171),(51,175),(51,176),(52,69),(52,75),(52,106),(52,111),(52,116),(52,172),(52,174),(52,176),(53,70),(53,76),(53,107),(53,113),(53,114),(53,173),(53,174),(53,175),(54,71),(54,77),(54,108),(54,114),(54,116),(54,171),(54,178),(54,179),(55,72),(55,78),(55,109),(55,113),(55,115),(55,172),(55,177),(55,179),(56,73),(56,79),(56,110),(56,111),(56,112),(56,173),(56,177),(56,178),(57,62),(57,63),(57,64),(57,68),(57,69),(57,70),(57,71),(57,72),(57,73),(57,127),(58,65),(58,66),(58,67),(58,74),(58,75),(58,76),(58,77),(58,78),(58,79),(58,127),(59,189),(59,210),(59,211),(59,256),(60,190),(60,210),(60,212),(60,257),(61,191),(61,210),(61,213),(61,258),(62,135),(62,138),(62,211),(62,214),(62,216),(62,219),(63,136),(63,139),(63,212),(63,214),(63,217),(63,220),(64,137),(64,140),(64,213),(64,214),(64,218),(64,221),(65,141),(65,144),(65,211),(65,215),(65,222),(65,225),(66,142),(66,145),(66,212),(66,215),(66,223),(66,226),(67,143),(67,146),(67,213),(67,215),(67,224),(67,227),(68,135),(68,148),(68,151),(68,217),(68,218),(68,248),(69,136),(69,147),(69,152),(69,216),(69,218),(69,249),(70,137),(70,149),(70,150),(70,216),(70,217),(70,250),(71,138),(71,150),(71,152),(71,220),(71,221),(71,248),(72,139),(72,149),(72,151),(72,219),(72,221),(72,249),(73,140),(73,147),(73,148),(73,219),(73,220),(73,250),(74,141),(74,154),(74,157),(74,223),(74,224),(74,248),(75,142),(75,153),(75,158),(75,222),(75,224),(75,249),(76,143),(76,155),(76,156),(76,222),(76,223),(76,250),(77,144),(77,156),(77,158),(77,226),(77,227),(77,248),(78,145),(78,155),(78,157),(78,225),(78,227),(78,249),(79,146),(79,153),(79,154),(79,225),(79,226),(79,250),(80,127),(80,132),(80,133),(80,134),(80,228),(80,229),(80,230),(81,135),(81,192),(81,245),(81,259),(82,136),(82,193),(82,246),(82,259),(83,137),(83,194),(83,247),(83,259),(84,138),(84,195),(84,245),(84,260),(85,139),(85,196),(85,246),(85,260),(86,140),(86,197),(86,247),(86,260),(87,141),(87,198),(87,245),(87,261),(88,142),(88,199),(88,246),(88,261),(89,143),(89,200),(89,247),(89,261),(90,144),(90,201),(90,245),(90,262),(91,145),(91,202),(91,246),(91,262),(92,146),(92,203),(92,247),(92,262),(93,147),(93,193),(93,197),(93,272),(94,148),(94,192),(94,197),(94,273),(95,149),(95,194),(95,196),(95,272),(96,150),(96,194),(96,195),(96,273),(97,151),(97,192),(97,196),(97,274),(98,152),(98,193),(98,195),(98,274),(99,153),(99,199),(99,203),(99,272),(100,154),(100,198),(100,203),(100,273),(101,155),(101,200),(101,202),(101,272),(102,156),(102,200),(102,201),(102,273),(103,157),(103,198),(103,202),(103,274),(104,158),(104,199),(104,201),(104,274),(105,135),(105,141),(105,189),(105,204),(105,263),(106,136),(106,142),(106,190),(106,205),(106,263),(107,137),(107,143),(107,191),(107,206),(107,263),(108,138),(108,144),(108,189),(108,207),(108,264),(109,139),(109,145),(109,190),(109,208),(109,264),(110,140),(110,146),(110,191),(110,209),(110,264),(111,147),(111,153),(111,205),(111,209),(111,256),(112,148),(112,154),(112,204),(112,209),(112,257),(113,149),(113,155),(113,206),(113,208),(113,256),(114,150),(114,156),(114,206),(114,207),(114,257),(115,151),(115,157),(115,204),(115,208),(115,258),(116,152),(116,158),(116,205),(116,207),(116,258),(117,171),(117,180),(117,228),(117,252),(117,253),(118,172),(118,181),(118,229),(118,251),(118,253),(119,173),(119,182),(119,230),(119,251),(119,252),(120,159),(120,165),(120,174),(120,186),(120,251),(120,255),(121,160),(121,166),(121,175),(121,187),(121,252),(121,255),(122,161),(122,167),(122,176),(122,188),(122,253),(122,255),(123,162),(123,168),(123,177),(123,183),(123,251),(123,254),(124,163),(124,169),(124,178),(124,184),(124,252),(124,254),(125,164),(125,170),(125,179),(125,185),(125,253),(125,254),(126,128),(126,129),(126,130),(126,131),(126,254),(126,255),(127,211),(127,212),(127,213),(127,248),(127,249),(127,250),(128,210),(128,243),(128,278),(129,214),(129,243),(129,259),(129,260),(130,215),(130,243),(130,261),(130,262),(131,210),(131,214),(131,215),(131,263),(131,264),(132,211),(132,243),(132,245),(132,272),(133,212),(133,243),(133,246),(133,273),(134,213),(134,243),(134,247),(134,274),(135,231),(135,265),(135,268),(136,232),(136,266),(136,268),(137,233),(137,267),(137,268),(138,234),(138,265),(138,269),(139,235),(139,266),(139,269),(140,236),(140,267),(140,269),(141,237),(141,265),(141,270),(142,238),(142,266),(142,270),(143,239),(143,267),(143,270),(144,240),(144,265),(144,271),(145,241),(145,266),(145,271),(146,242),(146,267),(146,271),(147,232),(147,236),(147,275),(148,231),(148,236),(148,276),(149,233),(149,235),(149,275),(150,233),(150,234),(150,276),(151,231),(151,235),(151,277),(152,232),(152,234),(152,277),(153,238),(153,242),(153,275),(154,237),(154,242),(154,276),(155,239),(155,241),(155,275),(156,239),(156,240),(156,276),(157,237),(157,241),(157,277),(158,238),(158,240),(158,277),(159,195),(159,216),(159,259),(159,272),(160,196),(160,217),(160,259),(160,273),(161,197),(161,218),(161,259),(161,274),(162,192),(162,219),(162,260),(162,272),(163,193),(163,220),(163,260),(163,273),(164,194),(164,221),(164,260),(164,274),(165,201),(165,222),(165,261),(165,272),(166,202),(166,223),(166,261),(166,273),(167,203),(167,224),(167,261),(167,274),(168,198),(168,225),(168,262),(168,272),(169,199),(169,226),(169,262),(169,273),(170,200),(170,227),(170,262),(170,274),(171,189),(171,248),(171,257),(171,258),(172,190),(172,249),(172,256),(172,258),(173,191),(173,250),(173,256),(173,257),(174,207),(174,216),(174,222),(174,256),(174,263),(175,208),(175,217),(175,223),(175,257),(175,263),(176,209),(176,218),(176,224),(176,258),(176,263),(177,204),(177,219),(177,225),(177,256),(177,264),(178,205),(178,220),(178,226),(178,257),(178,264),(179,206),(179,221),(179,227),(179,258),(179,264),(180,189),(180,245),(180,278),(181,190),(181,246),(181,278),(182,191),(182,247),(182,278),(183,192),(183,198),(183,204),(183,278),(184,193),(184,199),(184,205),(184,278),(185,194),(185,200),(185,206),(185,278),(186,195),(186,201),(186,207),(186,278),(187,196),(187,202),(187,208),(187,278),(188,197),(188,203),(188,209),(188,278),(189,265),(189,279),(190,266),(190,279),(191,267),(191,279),(192,231),(192,280),(193,232),(193,280),(194,233),(194,280),(195,234),(195,280),(196,235),(196,280),(197,236),(197,280),(198,237),(198,280),(199,238),(199,280),(200,239),(200,280),(201,240),(201,280),(202,241),(202,280),(203,242),(203,280),(204,231),(204,237),(204,279),(205,232),(205,238),(205,279),(206,233),(206,239),(206,279),(207,234),(207,240),(207,279),(208,235),(208,241),(208,279),(209,236),(209,242),(209,279),(210,244),(210,279),(211,244),(211,265),(211,275),(212,244),(212,266),(212,276),(213,244),(213,267),(213,277),(214,244),(214,268),(214,269),(215,244),(215,270),(215,271),(216,234),(216,268),(216,275),(217,235),(217,268),(217,276),(218,236),(218,268),(218,277),(219,231),(219,269),(219,275),(220,232),(220,269),(220,276),(221,233),(221,269),(221,277),(222,240),(222,270),(222,275),(223,241),(223,270),(223,276),(224,242),(224,270),(224,277),(225,237),(225,271),(225,275),(226,238),(226,271),(226,276),(227,239),(227,271),(227,277),(228,245),(228,248),(228,273),(228,274),(229,246),(229,249),(229,272),(229,274),(230,247),(230,250),(230,272),(230,273),(231,281),(232,281),(233,281),(234,281),(235,281),(236,281),(237,281),(238,281),(239,281),(240,281),(241,281),(242,281),(243,244),(243,280),(244,281),(245,265),(245,280),(246,266),(246,280),(247,267),(247,280),(248,265),(248,276),(248,277),(249,266),(249,275),(249,277),(250,267),(250,275),(250,276),(251,256),(251,272),(251,278),(252,257),(252,273),(252,278),(253,258),(253,274),(253,278),(254,260),(254,262),(254,264),(254,278),(255,259),(255,261),(255,263),(255,278),(256,275),(256,279),(257,276),(257,279),(258,277),(258,279),(259,268),(259,280),(260,269),(260,280),(261,270),(261,280),(262,271),(262,280),(263,268),(263,270),(263,279),(264,269),(264,271),(264,279),(265,281),(266,281),(267,281),(268,281),(269,281),(270,281),(271,281),(272,275),(272,280),(273,276),(273,280),(274,277),(274,280),(275,281),(276,281),(277,281),(278,279),(278,280),(279,281),(280,281)],282)
=> ? = 1
[1,2,2,2] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,13),(1,26),(1,27),(1,47),(1,48),(1,49),(1,50),(1,51),(1,52),(1,53),(1,54),(2,18),(2,19),(2,34),(2,35),(2,43),(2,44),(2,45),(2,46),(2,54),(2,56),(3,16),(3,17),(3,32),(3,33),(3,39),(3,40),(3,41),(3,42),(3,53),(3,56),(4,21),(4,23),(4,31),(4,37),(4,40),(4,44),(4,48),(4,120),(4,121),(5,20),(5,22),(5,30),(5,36),(5,39),(5,43),(5,47),(5,119),(5,121),(6,20),(6,24),(6,28),(6,37),(6,41),(6,45),(6,49),(6,117),(6,122),(7,21),(7,25),(7,29),(7,36),(7,42),(7,46),(7,50),(7,118),(7,122),(8,15),(8,24),(8,25),(8,33),(8,35),(8,38),(8,52),(8,119),(8,120),(9,14),(9,22),(9,23),(9,32),(9,34),(9,38),(9,51),(9,117),(9,118),(10,16),(10,18),(10,26),(10,29),(10,30),(10,55),(10,117),(10,120),(11,17),(11,19),(11,27),(11,28),(11,31),(11,55),(11,118),(11,119),(12,13),(12,14),(12,15),(12,55),(12,56),(12,121),(12,122),(13,62),(13,63),(13,135),(13,136),(13,137),(13,161),(14,57),(14,62),(14,129),(14,178),(14,236),(15,57),(15,63),(15,130),(15,179),(15,237),(16,72),(16,98),(16,99),(16,170),(16,173),(16,211),(17,73),(17,97),(17,100),(17,171),(17,172),(17,211),(18,74),(18,102),(18,103),(18,174),(18,177),(18,211),(19,75),(19,101),(19,104),(19,175),(19,176),(19,211),(20,58),(20,60),(20,76),(20,166),(20,168),(20,212),(21,59),(21,61),(21,77),(21,167),(21,169),(21,212),(22,68),(22,89),(22,93),(22,129),(22,166),(22,209),(23,69),(23,90),(23,94),(23,129),(23,167),(23,210),(24,70),(24,91),(24,95),(24,130),(24,168),(24,210),(25,71),(25,92),(25,96),(25,130),(25,169),(25,209),(26,72),(26,74),(26,106),(26,107),(26,135),(26,162),(26,165),(27,73),(27,75),(27,105),(27,108),(27,135),(27,163),(27,164),(28,97),(28,101),(28,105),(28,116),(28,168),(28,236),(29,98),(29,102),(29,106),(29,115),(29,169),(29,236),(30,99),(30,103),(30,107),(30,115),(30,166),(30,237),(31,100),(31,104),(31,108),(31,116),(31,167),(31,237),(32,89),(32,90),(32,109),(32,113),(32,170),(32,171),(32,178),(33,91),(33,92),(33,110),(33,113),(33,172),(33,173),(33,179),(34,93),(34,94),(34,111),(34,114),(34,174),(34,175),(34,178),(35,95),(35,96),(35,112),(35,114),(35,176),(35,177),(35,179),(36,64),(36,66),(36,79),(36,115),(36,209),(36,212),(37,65),(37,67),(37,80),(37,116),(37,210),(37,212),(38,57),(38,78),(38,113),(38,114),(38,209),(38,210),(39,58),(39,64),(39,81),(39,89),(39,99),(39,172),(39,213),(40,59),(40,65),(40,82),(40,90),(40,100),(40,173),(40,213),(41,58),(41,65),(41,83),(41,91),(41,97),(41,170),(41,214),(42,59),(42,64),(42,84),(42,92),(42,98),(42,171),(42,214),(43,60),(43,66),(43,85),(43,93),(43,103),(43,176),(43,213),(44,61),(44,67),(44,86),(44,94),(44,104),(44,177),(44,213),(45,60),(45,67),(45,87),(45,95),(45,101),(45,174),(45,214),(46,61),(46,66),(46,88),(46,96),(46,102),(46,175),(46,214),(47,68),(47,76),(47,79),(47,81),(47,85),(47,107),(47,136),(47,164),(48,69),(48,77),(48,80),(48,82),(48,86),(48,108),(48,136),(48,165),(49,70),(49,76),(49,80),(49,83),(49,87),(49,105),(49,137),(49,162),(50,71),(50,77),(50,79),(50,84),(50,88),(50,106),(50,137),(50,163),(51,62),(51,68),(51,69),(51,78),(51,109),(51,111),(51,162),(51,163),(52,63),(52,70),(52,71),(52,78),(52,110),(52,112),(52,164),(52,165),(53,72),(53,73),(53,81),(53,82),(53,83),(53,84),(53,109),(53,110),(53,161),(54,74),(54,75),(54,85),(54,86),(54,87),(54,88),(54,111),(54,112),(54,161),(55,135),(55,211),(55,236),(55,237),(56,161),(56,178),(56,179),(56,211),(56,213),(56,214),(57,138),(57,180),(57,252),(58,157),(58,181),(58,183),(58,246),(59,158),(59,182),(59,184),(59,246),(60,159),(60,185),(60,187),(60,246),(61,160),(61,186),(61,188),(61,246),(62,138),(62,189),(62,203),(62,238),(63,138),(63,190),(63,204),(63,239),(64,123),(64,131),(64,224),(64,246),(65,124),(65,132),(65,225),(65,246),(66,125),(66,133),(66,226),(66,246),(67,126),(67,134),(67,227),(67,246),(68,147),(68,151),(68,199),(68,203),(68,234),(69,148),(69,152),(69,200),(69,203),(69,235),(70,149),(70,153),(70,201),(70,204),(70,235),(71,150),(71,154),(71,202),(71,204),(71,234),(72,140),(72,141),(72,191),(72,194),(72,233),(73,139),(73,142),(73,192),(73,193),(73,233),(74,144),(74,145),(74,195),(74,198),(74,233),(75,143),(75,146),(75,196),(75,197),(75,233),(76,157),(76,159),(76,199),(76,201),(76,230),(77,158),(77,160),(77,200),(77,202),(77,230),(78,138),(78,155),(78,156),(78,234),(78,235),(79,127),(79,131),(79,133),(79,230),(79,234),(80,128),(80,132),(80,134),(80,230),(80,235),(81,131),(81,141),(81,147),(81,157),(81,193),(81,231),(82,132),(82,142),(82,148),(82,158),(82,194),(82,231),(83,132),(83,139),(83,149),(83,157),(83,191),(83,232),(84,131),(84,140),(84,150),(84,158),(84,192),(84,232),(85,133),(85,145),(85,151),(85,159),(85,197),(85,231),(86,134),(86,146),(86,152),(86,160),(86,198),(86,231),(87,134),(87,143),(87,153),(87,159),(87,195),(87,232),(88,133),(88,144),(88,154),(88,160),(88,196),(88,232),(89,147),(89,181),(89,224),(89,228),(90,148),(90,182),(90,225),(90,228),(91,149),(91,183),(91,225),(91,229),(92,150),(92,184),(92,224),(92,229),(93,151),(93,185),(93,226),(93,228),(94,152),(94,186),(94,227),(94,228),(95,153),(95,187),(95,227),(95,229),(96,154),(96,188),(96,226),(96,229),(97,124),(97,139),(97,183),(97,247),(98,123),(98,140),(98,184),(98,247),(99,123),(99,141),(99,181),(99,248),(100,124),(100,142),(100,182),(100,248),(101,126),(101,143),(101,187),(101,247),(102,125),(102,144),(102,188),(102,247),(103,125),(103,145),(103,185),(103,248),(104,126),(104,146),(104,186),(104,248),(105,128),(105,139),(105,143),(105,201),(105,238),(106,127),(106,140),(106,144),(106,202),(106,238),(107,127),(107,141),(107,145),(107,199),(107,239),(108,128),(108,142),(108,146),(108,200),(108,239),(109,147),(109,148),(109,155),(109,189),(109,191),(109,192),(110,149),(110,150),(110,155),(110,190),(110,193),(110,194),(111,151),(111,152),(111,156),(111,189),(111,195),(111,196),(112,153),(112,154),(112,156),(112,190),(112,197),(112,198),(113,155),(113,180),(113,224),(113,225),(114,156),(114,180),(114,226),(114,227),(115,123),(115,125),(115,127),(115,252),(116,124),(116,126),(116,128),(116,252),(117,162),(117,166),(117,170),(117,174),(117,210),(117,236),(118,163),(118,167),(118,171),(118,175),(118,209),(118,236),(119,164),(119,168),(119,172),(119,176),(119,209),(119,237),(120,165),(120,169),(120,173),(120,177),(120,210),(120,237),(121,129),(121,136),(121,212),(121,213),(121,237),(122,130),(122,137),(122,212),(122,214),(122,236),(123,205),(123,254),(124,206),(124,254),(125,207),(125,254),(126,208),(126,254),(127,205),(127,207),(127,253),(128,206),(128,208),(128,253),(129,203),(129,228),(129,252),(130,204),(130,229),(130,252),(131,205),(131,242),(131,249),(132,206),(132,243),(132,249),(133,207),(133,244),(133,249),(134,208),(134,245),(134,249),(135,233),(135,238),(135,239),(136,203),(136,230),(136,231),(136,239),(137,204),(137,230),(137,232),(137,238),(138,215),(138,253),(139,206),(139,218),(139,250),(140,205),(140,219),(140,250),(141,205),(141,216),(141,251),(142,206),(142,217),(142,251),(143,208),(143,222),(143,250),(144,207),(144,223),(144,250),(145,207),(145,220),(145,251),(146,208),(146,221),(146,251),(147,216),(147,240),(147,242),(148,217),(148,240),(148,243),(149,218),(149,241),(149,243),(150,219),(150,241),(150,242),(151,220),(151,240),(151,244),(152,221),(152,240),(152,245),(153,222),(153,241),(153,245),(154,223),(154,241),(154,244),(155,215),(155,242),(155,243),(156,215),(156,244),(156,245),(157,216),(157,218),(157,249),(158,217),(158,219),(158,249),(159,220),(159,222),(159,249),(160,221),(160,223),(160,249),(161,189),(161,190),(161,231),(161,232),(161,233),(162,191),(162,195),(162,199),(162,235),(162,238),(163,192),(163,196),(163,200),(163,234),(163,238),(164,193),(164,197),(164,201),(164,234),(164,239),(165,194),(165,198),(165,202),(165,235),(165,239),(166,181),(166,185),(166,199),(166,252),(167,182),(167,186),(167,200),(167,252),(168,183),(168,187),(168,201),(168,252),(169,184),(169,188),(169,202),(169,252),(170,181),(170,191),(170,225),(170,247),(171,182),(171,192),(171,224),(171,247),(172,183),(172,193),(172,224),(172,248),(173,184),(173,194),(173,225),(173,248),(174,185),(174,195),(174,227),(174,247),(175,186),(175,196),(175,226),(175,247),(176,187),(176,197),(176,226),(176,248),(177,188),(177,198),(177,227),(177,248),(178,180),(178,189),(178,228),(178,247),(179,180),(179,190),(179,229),(179,248),(180,215),(180,254),(181,216),(181,254),(182,217),(182,254),(183,218),(183,254),(184,219),(184,254),(185,220),(185,254),(186,221),(186,254),(187,222),(187,254),(188,223),(188,254),(189,215),(189,240),(189,250),(190,215),(190,241),(190,251),(191,216),(191,243),(191,250),(192,217),(192,242),(192,250),(193,218),(193,242),(193,251),(194,219),(194,243),(194,251),(195,220),(195,245),(195,250),(196,221),(196,244),(196,250),(197,222),(197,244),(197,251),(198,223),(198,245),(198,251),(199,216),(199,220),(199,253),(200,217),(200,221),(200,253),(201,218),(201,222),(201,253),(202,219),(202,223),(202,253),(203,240),(203,253),(204,241),(204,253),(205,255),(206,255),(207,255),(208,255),(209,224),(209,226),(209,234),(209,252),(210,225),(210,227),(210,235),(210,252),(211,233),(211,247),(211,248),(212,230),(212,246),(212,252),(213,228),(213,231),(213,246),(213,248),(214,229),(214,232),(214,246),(214,247),(215,255),(216,255),(217,255),(218,255),(219,255),(220,255),(221,255),(222,255),(223,255),(224,242),(224,254),(225,243),(225,254),(226,244),(226,254),(227,245),(227,254),(228,240),(228,254),(229,241),(229,254),(230,249),(230,253),(231,240),(231,249),(231,251),(232,241),(232,249),(232,250),(233,250),(233,251),(234,242),(234,244),(234,253),(235,243),(235,245),(235,253),(236,238),(236,247),(236,252),(237,239),(237,248),(237,252),(238,250),(238,253),(239,251),(239,253),(240,255),(241,255),(242,255),(243,255),(244,255),(245,255),(246,249),(246,254),(247,250),(247,254),(248,251),(248,254),(249,255),(250,255),(251,255),(252,253),(252,254),(253,255),(254,255)],256)
=> ? = 1
[1,6] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0
[3,4] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0
[4,3] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[5,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[5,2] => [2,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[6,1] => [1,6] => ([(5,6)],7)
=> ([(0,1)],2)
=> 0
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000264The girth of a graph, which is not a tree. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001875The number of simple modules with projective dimension at most 1.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!