searching the database
Your data matches 49 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000570
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00255: Decorated permutations —lower permutation⟶ Permutations
St000570: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000570: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[+,+] => [1,2] => 1
[-,+] => [2,1] => 1
[+,-] => [1,2] => 1
[-,-] => [1,2] => 1
[2,1] => [1,2] => 1
[+,+,+] => [1,2,3] => 1
[-,+,+] => [2,3,1] => 1
[+,-,+] => [1,3,2] => 1
[+,+,-] => [1,2,3] => 1
[-,-,+] => [3,1,2] => 1
[-,+,-] => [2,1,3] => 1
[+,-,-] => [1,2,3] => 1
[-,-,-] => [1,2,3] => 1
[+,3,2] => [1,2,3] => 1
[-,3,2] => [2,1,3] => 1
[2,1,+] => [1,3,2] => 1
[2,1,-] => [1,2,3] => 1
[2,3,1] => [1,2,3] => 1
[3,1,2] => [1,2,3] => 1
[3,+,1] => [2,1,3] => 1
[3,-,1] => [1,3,2] => 1
[+,+,+,+] => [1,2,3,4] => 1
[-,+,+,+] => [2,3,4,1] => 1
[+,-,+,+] => [1,3,4,2] => 1
[+,+,-,+] => [1,2,4,3] => 1
[+,+,+,-] => [1,2,3,4] => 1
[-,-,+,+] => [3,4,1,2] => 1
[-,+,-,+] => [2,4,1,3] => 1
[-,+,+,-] => [2,3,1,4] => 1
[+,-,-,+] => [1,4,2,3] => 1
[+,-,+,-] => [1,3,2,4] => 1
[+,+,-,-] => [1,2,3,4] => 1
[-,-,-,+] => [4,1,2,3] => 1
[-,-,+,-] => [3,1,2,4] => 1
[-,+,-,-] => [2,1,3,4] => 1
[+,-,-,-] => [1,2,3,4] => 1
[-,-,-,-] => [1,2,3,4] => 1
[+,+,4,3] => [1,2,3,4] => 1
[-,+,4,3] => [2,3,1,4] => 1
[+,-,4,3] => [1,3,2,4] => 1
[-,-,4,3] => [3,1,2,4] => 1
[+,3,2,+] => [1,2,4,3] => 1
[-,3,2,+] => [2,4,1,3] => 1
[+,3,2,-] => [1,2,3,4] => 1
[-,3,2,-] => [2,1,3,4] => 1
[+,3,4,2] => [1,2,3,4] => 1
[-,3,4,2] => [2,1,3,4] => 1
[+,4,2,3] => [1,2,3,4] => 1
[-,4,2,3] => [2,3,1,4] => 1
[+,4,+,2] => [1,3,2,4] => 1
Description
The Edelman-Greene number of a permutation.
This is the sum of the coefficients of the expansion of the Stanley symmetric function $F_\omega$ in Schur functions. Equivalently, this is the number of semistandard tableaux whose column words - obtained by reading up columns starting with the leftmost - are reduced words for $\omega$.
Matching statistic: St000704
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00253: Decorated permutations —permutation⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 83%●distinct values known / distinct values provided: 50%
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 83%●distinct values known / distinct values provided: 50%
Values
[+,+] => [1,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[-,+] => [1,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[+,-] => [1,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[-,-] => [1,2] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[2,1] => [2,1] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[+,+,+] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[-,+,+] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[+,-,+] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[+,+,-] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[-,-,+] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[-,+,-] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[+,-,-] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[-,-,-] => [1,2,3] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[+,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[-,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,+] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,-] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,+,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[3,-,1] => [3,2,1] => [1,1,1]
=> [1,1]
=> 1
[+,+,+,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,+,+,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,-,+,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,-,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,+,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,+,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,+,-,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,+,+,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,-,-,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,-,+,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,-,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,-,+] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,+,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,+,-,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,-,-,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,-,-] => [1,2,3,4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,+,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,-,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,4,3] => [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,3,2,+] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,3,2,+] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,3,2,-] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,3,2,-] => [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[+,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,+] => [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,-,+] => [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,+,-] => [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,4,1,3] => [2,4,1,3] => [2,2]
=> [2]
=> 1
[2,4,+,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[2,4,-,1] => [2,4,3,1] => [2,1,1]
=> [1,1]
=> 1
[3,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> 1
[3,+,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,4,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,-,4,1] => [3,2,4,1] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,2,1] => [3,4,2,1] => [2,1,1]
=> [1,1]
=> 1
[4,1,+,2] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,1,-,2] => [4,1,3,2] => [2,1,1]
=> [1,1]
=> 1
[4,+,1,3] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,-,1,3] => [4,2,1,3] => [2,1,1]
=> [1,1]
=> 1
[4,+,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,+,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4,3,1,2] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,5,+,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[-,+,5,+,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[+,-,5,+,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[+,+,5,-,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[-,-,5,+,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[-,+,5,-,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[+,-,5,-,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[-,-,5,-,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[+,3,2,5,4] => [1,3,2,5,4] => [3,2]
=> [2]
=> 1
[-,3,2,5,4] => [1,3,2,5,4] => [3,2]
=> [2]
=> 1
[+,3,5,2,4] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[-,3,5,2,4] => [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[+,3,5,+,2] => [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[-,3,5,+,2] => [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[+,3,5,-,2] => [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[-,3,5,-,2] => [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[+,4,2,5,3] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[-,4,2,5,3] => [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[+,4,+,2,+] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 1
[-,4,+,2,+] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 1
[+,4,-,2,+] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 1
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
Matching statistic: St000668
Mp00253: Decorated permutations —permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 78%●distinct values known / distinct values provided: 50%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 78%●distinct values known / distinct values provided: 50%
Values
[+,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[+,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[+,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[-,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,+] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,-] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,+,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,-,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[+,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[+,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,+] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,-] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,+,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,-,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,+] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,-] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,+,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,-,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,+,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,-,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,-,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,+,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,+] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,-] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,5,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
Description
The least common multiple of the parts of the partition.
Matching statistic: St000708
Mp00253: Decorated permutations —permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 78%●distinct values known / distinct values provided: 67%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000708: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 78%●distinct values known / distinct values provided: 67%
Values
[+,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[+,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[+,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[-,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,+] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,-] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,+,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,-,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[+,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[+,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,+] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,-] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,+,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,-,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,+] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,-] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,+,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,-,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,+,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,-,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,-,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,+,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,+] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,-] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,5,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
Description
The product of the parts of an integer partition.
Matching statistic: St000933
Mp00253: Decorated permutations —permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000933: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 78%●distinct values known / distinct values provided: 67%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000933: Integer partitions ⟶ ℤResult quality: 67% ●values known / values provided: 78%●distinct values known / distinct values provided: 67%
Values
[+,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[+,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[+,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[-,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,+] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,-] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,+,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,-,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[+,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[+,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 2
[2,3,1,+] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,1,-] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,+,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,-,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,+] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,-] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,+,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,-,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 2
[3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,+,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,-,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,-,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,+,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,+] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,-] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,5,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
Description
The number of multipartitions of sizes given by an integer partition.
This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
Matching statistic: St001128
Mp00253: Decorated permutations —permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 78%●distinct values known / distinct values provided: 33%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 78%●distinct values known / distinct values provided: 33%
Values
[+,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,+] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[+,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[-,-] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1}
[+,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,+] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,+,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[-,-,-] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[+,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[-,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,+] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,1,-] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,+,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[3,-,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1}
[+,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,+] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,+,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,+,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[-,-,-,-] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[+,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,+,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[-,-,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,+] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[-,3,2,-] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[+,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,+,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[+,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[-,4,-,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,+] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,+,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,-,-] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,+] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,1,-] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,4,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,4,+,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,4,-,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,2,+] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,2,-] => [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,4,2] => [3,1,4,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,+,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,+] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,-,1,-] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,+,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,-,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,2,1] => [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,1,2,3] => [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,1,+,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,1,-,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,+,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,-,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,+,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,+,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,+,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,-,-,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,3,5,2,4] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,2,5,3] => [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,4,5,3,2] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,2,3,4] => [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[+,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[-,5,4,2,3] => [1,5,4,2,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,+] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,1,-] => [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,4,5,1] => [2,3,4,5,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
Description
The exponens consonantiae of a partition.
This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
Matching statistic: St001964
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00256: Decorated permutations —upper permutation⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 33% ●values known / values provided: 74%●distinct values known / distinct values provided: 33%
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 33% ●values known / values provided: 74%●distinct values known / distinct values provided: 33%
Values
[+,+] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[-,+] => [2,1] => [1,2] => ([(0,1)],2)
=> 0 = 1 - 1
[+,-] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[-,-] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[2,1] => [2,1] => [1,2] => ([(0,1)],2)
=> 0 = 1 - 1
[+,+,+] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[-,+,+] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[+,-,+] => [1,3,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[+,+,-] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[-,-,+] => [3,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[-,+,-] => [2,1,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[+,-,-] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[-,-,-] => [1,2,3] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[+,3,2] => [1,3,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[-,3,2] => [3,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[2,1,+] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,1,-] => [2,1,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[2,3,1] => [3,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[3,1,2] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,+,1] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,-,1] => [3,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1} - 1
[+,+,+,+] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[-,+,+,+] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[+,-,+,+] => [1,3,4,2] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1 = 2 - 1
[+,+,-,+] => [1,2,4,3] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[+,+,+,-] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[-,-,+,+] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[-,+,-,+] => [2,4,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[-,+,+,-] => [2,3,1,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[+,-,-,+] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
[+,-,+,-] => [1,3,2,4] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[+,+,-,-] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[-,-,-,+] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[-,-,+,-] => [3,1,2,4] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[-,+,-,-] => [2,1,3,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[+,-,-,-] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[-,-,-,-] => [1,2,3,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[+,+,4,3] => [1,2,4,3] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[-,+,4,3] => [2,4,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[+,-,4,3] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
[-,-,4,3] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[+,3,2,+] => [1,3,4,2] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1 = 2 - 1
[-,3,2,+] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[+,3,2,-] => [1,3,2,4] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[-,3,2,-] => [3,1,2,4] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[+,3,4,2] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
[-,3,4,2] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[+,4,2,3] => [1,3,4,2] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1 = 2 - 1
[-,4,2,3] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[+,4,+,2] => [1,3,4,2] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1 = 2 - 1
[-,4,+,2] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[+,4,-,2] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
[-,4,-,2] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[2,1,+,+] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,1,-,+] => [2,4,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,1,+,-] => [2,3,1,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[2,1,-,-] => [2,1,3,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,1,4,3] => [2,4,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,+] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,-] => [3,1,2,4] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[2,3,4,1] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[2,4,1,3] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[2,4,+,1] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[2,4,-,1] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[3,1,2,+] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,2,-] => [2,3,1,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[3,1,4,2] => [2,4,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,+,1,+] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,-,1,+] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[3,+,1,-] => [2,3,1,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[3,-,1,-] => [3,1,2,4] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[3,+,4,1] => [2,4,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,-,4,1] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[3,4,1,2] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[3,4,2,1] => [3,4,1,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[4,-,-,1] => [4,1,2,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} - 1
[+,-,+,+,-] => [1,3,4,2,5] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,+,-,+,-] => [1,2,4,3,5] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[-,-,+,+,-] => [3,4,1,2,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[-,+,-,+,-] => [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,-,-,+,-] => [1,4,2,3,5] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,-,+,-,-] => [1,3,2,4,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,+,4,3,-] => [1,2,4,3,5] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[-,+,4,3,-] => [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,-,4,3,-] => [1,4,2,3,5] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,3,2,+,-] => [1,3,4,2,5] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[-,3,2,+,-] => [3,4,1,2,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,3,2,-,-] => [1,3,2,4,5] => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,3,4,2,-] => [1,4,2,3,5] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,4,2,3,-] => [1,3,4,2,5] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[-,4,2,3,-] => [3,4,1,2,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,4,+,2,-] => [1,3,4,2,5] => [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[-,4,+,2,-] => [3,4,1,2,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[+,4,-,2,-] => [1,4,2,3,5] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[2,1,-,+,-] => [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[2,1,4,3,-] => [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[2,3,1,+,-] => [3,4,1,2,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[2,4,1,3,-] => [3,4,1,2,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[2,4,+,1,-] => [3,4,1,2,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
[3,1,4,2,-] => [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3} - 1
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St000260
(load all 24 compositions to match this statistic)
(load all 24 compositions to match this statistic)
Mp00253: Decorated permutations —permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 73%●distinct values known / distinct values provided: 50%
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 73%●distinct values known / distinct values provided: 50%
Values
[+,+] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[-,+] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[+,-] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[-,-] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[2,1] => [2,1] => [1,2] => ([],2)
=> ? = 1
[+,+,+] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[-,+,+] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[+,-,+] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[+,+,-] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[-,-,+] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[-,+,-] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[+,-,-] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[-,-,-] => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[+,3,2] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[-,3,2] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[2,1,+] => [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[2,1,-] => [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[2,3,1] => [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1}
[3,1,2] => [3,1,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1}
[3,+,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[3,-,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[+,+,+,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,+,+,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,-,+,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,+,-,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,+,+,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,-,+,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,+,-,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,+,+,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,-,-,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,-,+,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,+,-,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,-,-,+] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,-,+,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,+,-,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,-,-,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,-,-,-] => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,+,4,3] => [1,2,4,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,+,4,3] => [1,2,4,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,-,4,3] => [1,2,4,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,-,4,3] => [1,2,4,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,3,2,+] => [1,3,2,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,3,2,+] => [1,3,2,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,3,2,-] => [1,3,2,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,3,2,-] => [1,3,2,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,3,4,2] => [1,3,4,2] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,3,4,2] => [1,3,4,2] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,4,2,3] => [1,4,2,3] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,4,2,3] => [1,4,2,3] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,4,+,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[-,4,+,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[+,4,-,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[-,4,-,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1,+,+] => [2,1,3,4] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,-,+] => [2,1,3,4] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,3,4,1] => [2,3,4,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,+,1] => [2,4,3,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,-,1] => [2,4,3,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,+,4,1] => [3,2,4,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,-,4,1] => [3,2,4,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,1,2] => [3,4,1,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,2,1] => [3,4,2,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,2,3] => [4,1,2,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,+,2] => [4,1,3,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,1,-,2] => [4,1,3,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,1,3] => [4,2,1,3] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,-,1,3] => [4,2,1,3] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,+,1] => [4,2,3,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,-,+,1] => [4,2,3,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,+,-,1] => [4,2,3,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,-,-,1] => [4,2,3,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,3,4,5,1] => [2,3,4,5,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,5,+,1] => [2,3,5,4,1] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,3,5,-,1] => [2,3,5,4,1] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,4,+,5,1] => [2,4,3,5,1] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,4,-,5,1] => [2,4,3,5,1] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,4,5,3,1] => [2,4,5,3,1] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,5,+,+,1] => [2,5,3,4,1] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,5,-,+,1] => [2,5,3,4,1] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,5,+,-,1] => [2,5,3,4,1] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,5,-,-,1] => [2,5,3,4,1] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[2,5,4,3,1] => [2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,+,4,5,1] => [3,2,4,5,1] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,-,4,5,1] => [3,2,4,5,1] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,+,5,+,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,-,5,+,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,+,5,-,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,-,5,-,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,4,2,5,1] => [3,4,2,5,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,4,5,1,2] => [3,4,5,1,2] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,4,5,2,1] => [3,4,5,2,1] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,5,2,+,1] => [3,5,2,4,1] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,5,2,-,1] => [3,5,2,4,1] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,5,4,1,2] => [3,5,4,1,2] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[3,5,4,2,1] => [3,5,4,2,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[4,+,+,5,1] => [4,2,3,5,1] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[4,-,+,5,1] => [4,2,3,5,1] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[4,+,-,5,1] => [4,2,3,5,1] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000741
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00253: Decorated permutations —permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000741: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 67%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000741: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 67%
Values
[+,+] => [1,2] => [1,2] => ([],2)
=> 1
[-,+] => [1,2] => [1,2] => ([],2)
=> 1
[+,-] => [1,2] => [1,2] => ([],2)
=> 1
[-,-] => [1,2] => [1,2] => ([],2)
=> 1
[2,1] => [2,1] => [1,2] => ([],2)
=> 1
[+,+,+] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[-,+,+] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[+,-,+] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[+,+,-] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[-,-,+] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[-,+,-] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[+,-,-] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[-,-,-] => [1,2,3] => [1,2,3] => ([],3)
=> 1
[+,3,2] => [1,3,2] => [1,2,3] => ([],3)
=> 1
[-,3,2] => [1,3,2] => [1,2,3] => ([],3)
=> 1
[2,1,+] => [2,1,3] => [1,2,3] => ([],3)
=> 1
[2,1,-] => [2,1,3] => [1,2,3] => ([],3)
=> 1
[2,3,1] => [2,3,1] => [1,2,3] => ([],3)
=> 1
[3,1,2] => [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1}
[3,+,1] => [3,2,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1}
[3,-,1] => [3,2,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1}
[+,+,+,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,+,+,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,-,+,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,+,-,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,+,+,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,-,+,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,+,-,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,+,+,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,-,-,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,-,+,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,+,-,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,-,-,+] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,-,+,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,+,-,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,-,-,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[-,-,-,-] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[+,+,4,3] => [1,2,4,3] => [1,2,3,4] => ([],4)
=> 1
[-,+,4,3] => [1,2,4,3] => [1,2,3,4] => ([],4)
=> 1
[+,-,4,3] => [1,2,4,3] => [1,2,3,4] => ([],4)
=> 1
[-,-,4,3] => [1,2,4,3] => [1,2,3,4] => ([],4)
=> 1
[+,3,2,+] => [1,3,2,4] => [1,2,3,4] => ([],4)
=> 1
[-,3,2,+] => [1,3,2,4] => [1,2,3,4] => ([],4)
=> 1
[+,3,2,-] => [1,3,2,4] => [1,2,3,4] => ([],4)
=> 1
[-,3,2,-] => [1,3,2,4] => [1,2,3,4] => ([],4)
=> 1
[+,3,4,2] => [1,3,4,2] => [1,2,3,4] => ([],4)
=> 1
[-,3,4,2] => [1,3,4,2] => [1,2,3,4] => ([],4)
=> 1
[+,4,2,3] => [1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,4,2,3] => [1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,+,2] => [1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,4,+,2] => [1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,4,-,2] => [1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[-,4,-,2] => [1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,1,+,+] => [2,1,3,4] => [1,2,3,4] => ([],4)
=> 1
[2,1,-,+] => [2,1,3,4] => [1,2,3,4] => ([],4)
=> 1
[2,1,+,-] => [2,1,3,4] => [1,2,3,4] => ([],4)
=> 1
[2,1,-,-] => [2,1,3,4] => [1,2,3,4] => ([],4)
=> 1
[2,1,4,3] => [2,1,4,3] => [1,2,3,4] => ([],4)
=> 1
[2,3,1,+] => [2,3,1,4] => [1,2,3,4] => ([],4)
=> 1
[2,4,1,3] => [2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,+,1] => [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[2,4,-,1] => [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,+] => [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,1,2,-] => [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,+,1,+] => [3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,-,1,+] => [3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,+,1,-] => [3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,-,1,-] => [3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,1,2] => [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[3,4,2,1] => [3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[+,+,5,3,4] => [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,+,5,3,4] => [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,-,5,3,4] => [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,-,5,3,4] => [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,+,5,+,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,+,5,+,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,-,5,+,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,+,5,-,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,-,5,+,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,+,5,-,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,-,5,-,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,-,5,-,3] => [1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,3,5,2,4] => [1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,3,5,2,4] => [1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,3,5,+,2] => [1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,3,5,+,2] => [1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,3,5,-,2] => [1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,3,5,-,2] => [1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,4,2,3,+] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,4,2,3,+] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,4,2,3,-] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,4,2,3,-] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,4,+,2,+] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,4,+,2,+] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,4,-,2,+] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,4,+,2,-] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,4,-,2,+] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,4,+,2,-] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[+,4,-,2,-] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
[-,4,-,2,-] => [1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3}
Description
The Colin de Verdière graph invariant.
Matching statistic: St001199
Mp00255: Decorated permutations —lower permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 47%●distinct values known / distinct values provided: 17%
Mp00069: Permutations —complement⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 17% ●values known / values provided: 47%●distinct values known / distinct values provided: 17%
Values
[+,+] => [1,2] => [2,1] => [1,1,0,0]
=> ? ∊ {1,1,1,1}
[-,+] => [2,1] => [1,2] => [1,0,1,0]
=> 1
[+,-] => [1,2] => [2,1] => [1,1,0,0]
=> ? ∊ {1,1,1,1}
[-,-] => [1,2] => [2,1] => [1,1,0,0]
=> ? ∊ {1,1,1,1}
[2,1] => [1,2] => [2,1] => [1,1,0,0]
=> ? ∊ {1,1,1,1}
[+,+,+] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[-,+,+] => [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[+,-,+] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[+,+,-] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[-,-,+] => [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[-,+,-] => [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[+,-,-] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[-,-,-] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[+,3,2] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[-,3,2] => [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[2,1,+] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[2,1,-] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[2,3,1] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[3,1,2] => [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[3,+,1] => [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[3,-,1] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1}
[+,+,+,+] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,+,+,+] => [2,3,4,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[+,-,+,+] => [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,-,+] => [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,+,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,+,+] => [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[-,+,-,+] => [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[-,+,+,-] => [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[+,-,-,+] => [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,-,+,-] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,-,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,-,+] => [4,1,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[-,-,+,-] => [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[-,+,-,-] => [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[+,-,-,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,-,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[+,+,4,3] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,+,4,3] => [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[+,-,4,3] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,-,4,3] => [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[+,3,2,+] => [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,3,2,+] => [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[+,3,2,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,3,2,-] => [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[+,3,4,2] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,3,4,2] => [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[+,4,2,3] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,4,2,3] => [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[+,4,+,2] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,4,+,2] => [3,2,1,4] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[+,4,-,2] => [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[-,4,-,2] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[2,1,+,+] => [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,-,+] => [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,+,-] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,-,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,4,3] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,1,+] => [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,1,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,4,1] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,4,1,3] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[2,4,+,1] => [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[2,4,-,1] => [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,2,+] => [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,2,-] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,4,2] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,+,1,+] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[3,-,1,+] => [1,4,3,2] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,+,1,-] => [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[3,-,1,-] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,+,4,1] => [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[3,-,4,1] => [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,4,1,2] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[3,4,2,1] => [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[4,1,2,3] => [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[4,+,1,3] => [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[4,+,+,1] => [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[4,-,+,1] => [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[4,+,-,1] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[4,3,2,1] => [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[-,+,+,+,+] => [2,3,4,5,1] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[-,-,+,+,+] => [3,4,5,1,2] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[-,+,-,+,+] => [2,4,5,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[-,+,+,-,+] => [2,3,5,1,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[-,+,+,+,-] => [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[-,-,-,+,+] => [4,5,1,2,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[-,-,+,-,+] => [3,5,1,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[-,-,+,+,-] => [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[-,+,-,-,+] => [2,5,1,3,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[-,+,-,+,-] => [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[-,+,+,-,-] => [2,3,1,4,5] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[-,-,-,-,+] => [5,1,2,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[-,-,-,+,-] => [4,1,2,3,5] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[-,-,+,-,-] => [3,1,2,4,5] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[-,+,-,-,-] => [2,1,3,4,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[-,+,+,5,4] => [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[-,-,+,5,4] => [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[-,+,-,5,4] => [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[-,-,-,5,4] => [4,1,2,3,5] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
The following 39 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001520The number of strict 3-descents. St001845The number of join irreducibles minus the rank of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000068The number of minimal elements in a poset. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000456The monochromatic index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001868The number of alignments of type NE of a signed permutation. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001866The nesting alignments of a signed permutation. St001490The number of connected components of a skew partition. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001396Number of triples of incomparable elements in a finite poset. St000454The largest eigenvalue of a graph if it is integral. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001624The breadth of a lattice. St000911The number of maximal antichains of maximal size in a poset. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000298The order dimension or Dushnik-Miller dimension of a poset. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000907The number of maximal antichains of minimal length in a poset. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St000717The number of ordinal summands of a poset. St001857The number of edges in the reduced word graph of a signed permutation. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St000084The number of subtrees. St000328The maximum number of child nodes in a tree. St001926Sparre Andersen's position of the maximum of a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!