searching the database
Your data matches 323 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001354
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 0
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 0
([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of series nodes in the modular decomposition of a graph.
Matching statistic: St001629
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00117: Graphs —Ore closure⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 58% ●values known / values provided: 58%●distinct values known / distinct values provided: 100%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
St001629: Integer compositions ⟶ ℤResult quality: 58% ●values known / values provided: 58%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => [1] => ? = 0
([],2)
=> ([],2)
=> [2] => [1] => ? ∊ {0,1}
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [2] => ? ∊ {0,1}
([],3)
=> ([],3)
=> [3] => [1] => ? ∊ {0,1,1}
([(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,1] => ? ∊ {0,1,1}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [3] => 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => ? ∊ {0,1,1}
([],4)
=> ([],4)
=> [4] => [1] => ? ∊ {0,1,1,1,1,2,2}
([(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [1,1] => ? ∊ {0,1,1,1,1,2,2}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [2] => ? ∊ {0,1,1,1,1,2,2}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [4] => 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2] => ? ∊ {0,1,1,1,1,2,2}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [4] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ? ∊ {0,1,1,1,1,2,2}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ? ∊ {0,1,1,1,1,2,2}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ? ∊ {0,1,1,1,1,2,2}
([],5)
=> ([],5)
=> [5] => [1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(3,4)],5)
=> ([(3,4)],5)
=> [1,4] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,2] => 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [5] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([],6)
=> ([],6)
=> [6] => [1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(4,5)],6)
=> ([(4,5)],6)
=> [1,5] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => 1
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> [2,4] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => 0
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [2] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [3] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [6] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [2] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [6] => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [6] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [3] => 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [3,3] => [2] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [2] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Matching statistic: St001570
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {0,1}
([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,1}
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,1,1,1}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {0,1,1,1}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,1,1,1}
([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(2,3)],4)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2}
([],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
([],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St001604
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> ? = 0
([],2)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,1}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1}
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {1,1}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {1,1}
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {1,1,1,2,2}
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {1,1,1,2,2}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {1,1,1,2,2}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {1,1,1,2,2}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {1,1,1,2,2}
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,2,2,3}
([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(4,5)],6)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [8]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St000260
(load all 30 compositions to match this statistic)
(load all 30 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,2,2}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,2,2}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,2,2}
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3}
([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(4,5)],6)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3}
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000137
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000137: Integer partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000137: Integer partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,1,1,2,2}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,1,1,2,2}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 0
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 0
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
Description
The Grundy value of an integer partition.
Consider the two-player game on an integer partition.
In each move, a player removes either a box, or a 2x2-configuration of boxes such that the resulting diagram is still a partition.
The first player that cannot move lose. This happens exactly when the empty partition is reached.
The grundy value of an integer partition is defined as the grundy value of this two-player game as defined in [1].
This game was described to me during Norcom 2013, by Urban Larsson, and it seems to be quite difficult to give a good description of the partitions with Grundy value 0.
Matching statistic: St000755
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 53%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 53%●distinct values known / distinct values provided: 50%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,0,1,1,2}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,0,1,1,2}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,2}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,2}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 2
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 2
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Matching statistic: St001283
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001283: Integer partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001283: Integer partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 0
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 0
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 0
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 0
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
Description
The number of finite solvable groups that are realised by the given partition over the complex numbers.
A finite group $G$ is ''realised'' by the partition $(a_1,\dots,a_m)$ if its group algebra over the complex numbers is isomorphic to the direct product of $a_i\times a_i$ matrix rings over the complex numbers.
The smallest partition which does not realise a solvable group, but does realise a finite group, is $(5,4,3,3,1)$.
Matching statistic: St001284
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001284: Integer partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001284: Integer partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 75%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 0
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 0
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 0
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 0
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
Description
The number of finite groups that are realised by the given partition over the complex numbers.
A finite group $G$ is 'realised' by the partition $(a_1,...,a_m)$ if its group algebra over the complex numbers is isomorphic to the direct product of $a_i\times a_i$ matrix rings over the complex numbers.
Matching statistic: St001432
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 53%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 53%●distinct values known / distinct values provided: 50%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,0,1,2,2}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,0,1,2,2}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,0,1,2,2}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,2,2}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,2,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3}
Description
The order dimension of the partition.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
The following 313 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000535The rank-width of a graph. St001383The BG-rank of an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St000259The diameter of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000741The Colin de Verdière graph invariant. St001273The projective dimension of the first term in an injective coresolution of the regular module. St000331The number of upper interactions of a Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001118The acyclic chromatic index of a graph. St001281The normalized isoperimetric number of a graph. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000929The constant term of the character polynomial of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001271The competition number of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000544The cop number of a graph. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001322The size of a minimal independent dominating set in a graph. St000456The monochromatic index of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001339The irredundance number of a graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000120The number of left tunnels of a Dyck path. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001571The Cartan determinant of the integer partition. St001592The maximal number of simple paths between any two different vertices of a graph. St001593This is the number of standard Young tableaux of the given shifted shape. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000003The number of standard Young tableaux of the partition. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000010The length of the partition. St000026The position of the first return of a Dyck path. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000053The number of valleys of the Dyck path. St000075The orbit size of a standard tableau under promotion. St000088The row sums of the character table of the symmetric group. St000148The number of odd parts of a partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000182The number of permutations whose cycle type is the given integer partition. St000183The side length of the Durfee square of an integer partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000291The number of descents of a binary word. St000306The bounce count of a Dyck path. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000340The number of non-final maximal constant sub-paths of length greater than one. St000345The number of refinements of a partition. St000389The number of runs of ones of odd length in a binary word. St000390The number of runs of ones in a binary word. St000475The number of parts equal to 1 in a partition. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000517The Kreweras number of an integer partition. St000529The number of permutations whose descent word is the given binary word. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000543The size of the conjugacy class of a binary word. St000547The number of even non-empty partial sums of an integer partition. St000549The number of odd partial sums of an integer partition. St000626The minimal period of a binary word. St000627The exponent of a binary word. St000628The balance of a binary word. St000630The length of the shortest palindromic decomposition of a binary word. St000644The number of graphs with given frequency partition. St000655The length of the minimal rise of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000691The number of changes of a binary word. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000734The last entry in the first row of a standard tableau. St000783The side length of the largest staircase partition fitting into a partition. St000847The number of standard Young tableaux whose descent set is the binary word. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000897The number of different multiplicities of parts of an integer partition. St000913The number of ways to refine the partition into singletons. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000932The number of occurrences of the pattern UDU in a Dyck path. St000935The number of ordered refinements of an integer partition. St000947The major index east count of a Dyck path. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000983The length of the longest alternating subword. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001027Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001256Number of simple reflexive modules that are 2-stable reflexive. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001274The number of indecomposable injective modules with projective dimension equal to two. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001313The number of Dyck paths above the lattice path given by a binary word. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001424The number of distinct squares in a binary word. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001481The minimal height of a peak of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001484The number of singletons of an integer partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001525The number of symmetric hooks on the diagonal of a partition. St001530The depth of a Dyck path. St001595The number of standard Young tableaux of the skew partition. St001597The Frobenius rank of a skew partition. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001732The number of peaks visible from the left. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001884The number of borders of a binary word. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001933The largest multiplicity of a part in an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001955The number of natural descents for set-valued two row standard Young tableaux. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001128The exponens consonantiae of a partition. St000478Another weight of a partition according to Alladi. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000928The sum of the coefficients of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St000422The energy of a graph, if it is integral. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000442The maximal area to the right of an up step of a Dyck path. St000658The number of rises of length 2 of a Dyck path. St000674The number of hills of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000693The modular (standard) major index of a standard tableau. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000874The position of the last double rise in a Dyck path. St000940The number of characters of the symmetric group whose value on the partition is zero. St000946The sum of the skew hook positions in a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001139The number of occurrences of hills of size 2 in a Dyck path. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001720The minimal length of a chain of small intervals in a lattice. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001060The distinguishing index of a graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000907The number of maximal antichains of minimal length in a poset. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001527The cyclic permutation representation number of an integer partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!