Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001541
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St001541: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 14
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 11
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 31
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> 31
Description
The Gini index of an integer partition. As discussed in [1], this statistic is equal to [[St000567]] applied to the conjugate partition.
Matching statistic: St000009
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [[1]]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 14
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 11
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> 31
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> 31
Description
The charge of a standard tableau.
Matching statistic: St000567
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000567: Integer partitions ⟶ ℤResult quality: 83% values known / values provided: 86%distinct values known / distinct values provided: 83%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> ? = 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,1,1,1,1]
=> 14
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 11
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 31
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 31
Description
The sum of the products of all pairs of parts. This is the evaluation of the second elementary symmetric polynomial which is equal to $$e_2(\lambda) = \binom{n+1}{2} - \sum_{i=1}^\ell\binom{\lambda_i+1}{2}$$ for a partition $\lambda = (\lambda_1,\dots,\lambda_\ell) \vdash n$, see [1]. This is the maximal number of inversions a permutation with the given shape can have, see [2, cor.2.4].
Matching statistic: St001350
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St001350: Graphs ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 83%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 14
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 11
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {31,31}
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {31,31}
Description
Half of the Albertson index of a graph. This is $\frac{1}{2}\sum_{\{u,v\}\in E}|d(u)-d(v)|$, where $E$ is the set of edges and $d_v$ is the degree of vertex $v$, see [1]. In particular, this statistic vanishes on graphs whose components are all regular, see [2].
Matching statistic: St001833
Mp00148: Finite Cartan types to root posetPosets
Mp00125: Posets dual posetPosets
Mp00205: Posets maximal antichainsLattices
St001833: Lattices ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 83%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> 3 = 2 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 15 = 14 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 12 = 11 + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,6),(3,8),(4,5),(4,8),(5,1),(5,7),(6,3),(6,4),(8,2),(8,7)],9)
=> ([(0,5),(1,8),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4),(7,8)],9)
=> ? ∊ {31,31} + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,6),(3,8),(4,5),(4,8),(5,1),(5,7),(6,3),(6,4),(8,2),(8,7)],9)
=> ([(0,5),(1,8),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4),(7,8)],9)
=> ? ∊ {31,31} + 1
Description
The number of linear intervals in a lattice.
Matching statistic: St000212
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000212: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 3 = 2 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 15 = 14 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? ∊ {11,31,31} + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
Description
The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. Summing over all partitions of $n$ yields the sequence $$1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, \dots$$ which is [[oeis:A237770]]. The references in this sequence of the OEIS indicate a connection with Baxter permutations.
Matching statistic: St000278
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000278: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 3 = 2 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 15 = 14 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? ∊ {11,31,31} + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. This is the multinomial of the multiplicities of the parts, see [1]. This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$, where $k$ is the number of parts of $\lambda$. An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$ where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
Matching statistic: St000620
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000620: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 3 = 2 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 15 = 14 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? ∊ {11,31,31} + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is odd. The case of an even minimum is [[St000621]].
Matching statistic: St000704
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000704: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 3 = 2 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 15 = 14 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? ∊ {11,31,31} + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry. This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$. Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly, $$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$ where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell. See [Theorem 6.3, 1] for details.
Matching statistic: St001908
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001908: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 3 = 2 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 15 = 14 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? ∊ {11,31,31} + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? ∊ {11,31,31} + 1
Description
The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. For example, there are eight tableaux of shape $[3,2,1]$ with maximal entry $3$, but two of them have the same weight.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000309The number of vertices with even degree. St000479The Ramsey number of a graph. St001345The Hamming dimension of a graph.