searching the database
Your data matches 25 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000860
St000860: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2
['A',2]
=> 1
['B',2]
=> 2
['G',2]
=> 2
Description
The size of the center of the Weyl group of a finite Cartan type.
Matching statistic: St000667
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St000755
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Matching statistic: St000618
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000618: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000618: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 1 = 2 - 1
Description
The number of self-evacuating tableaux of given shape.
This is the same as the number of standard domino tableaux of the given shape.
Matching statistic: St000811
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000811: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000811: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 1 = 2 - 1
Description
The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to Schur symmetric functions.
For example, $p_{22} = s_{1111} - s_{211} + 2s_{22} - s_{31} + s_4$, so the statistic on the partition $22$ is 2.
This is also the sum of the character values at the given conjugacy class over all irreducible characters of the symmetric group. [2]
For a permutation $\pi$ of given cycle type, this is also the number of permutations whose square equals $\pi$. [2]
Matching statistic: St001057
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
Description
The Grundy value of the game of creating an independent set in a graph.
Two players alternately add a vertex to an initially empty set, which is not adjacent to any of the vertices it already contains.
Alternatively, the game can be described as starting with a graph, the players remove vertices together with their neighbors, until the graph is empty.
Matching statistic: St000952
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000952: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000952: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
Description
Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers.
Here the Coxeter polynomial is by definition the Coxeter polynomial of the corresponding LNakayama algebra.
Matching statistic: St001121
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001121: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001121: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [5,1]
=> 1 = 2 - 1
Description
The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^\lambda$.
Matching statistic: St001283
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001283: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001283: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 1 = 2 - 1
Description
The number of finite solvable groups that are realised by the given partition over the complex numbers.
A finite group $G$ is ''realised'' by the partition $(a_1,\dots,a_m)$ if its group algebra over the complex numbers is isomorphic to the direct product of $a_i\times a_i$ matrix rings over the complex numbers.
The smallest partition which does not realise a solvable group, but does realise a finite group, is $(5,4,3,3,1)$.
Matching statistic: St001284
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001284: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001284: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 1 = 2 - 1
Description
The number of finite groups that are realised by the given partition over the complex numbers.
A finite group $G$ is 'realised' by the partition $(a_1,...,a_m)$ if its group algebra over the complex numbers is isomorphic to the direct product of $a_i\times a_i$ matrix rings over the complex numbers.
The following 15 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001910The height of the middle non-run of a Dyck path. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001281The normalized isoperimetric number of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001118The acyclic chromatic index of a graph. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000997The even-odd crank of an integer partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!