searching the database
Your data matches 25 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001085
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
St001085: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
St001085: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 0
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[3] => [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,2,3] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,1,4,2,3] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,1,5,3,4] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,5,1,2,3,4] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [3,6,1,2,4,5] => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,4,1,2,3] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,6,1,3,4,5] => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,5,1,3,4,6] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [6,2,5,1,3,4] => 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [4,3,1,2,5,6] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [3,2,6,1,4,5] => 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [5,4,3,1,2,6] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [6,5,4,3,1,2] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [1,6,2,3,4,5] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [1,5,2,3,4,6] => 0
Description
The number of occurrences of the vincular pattern |21-3 in a permutation.
This is the number of occurrences of the pattern 213, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Matching statistic: St000455
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 67%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 0 - 1
[1,1] => [2] => ([],2)
=> ([],1)
=> ? = 0 - 1
[2] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> -1 = 0 - 1
[1,1,1] => [3] => ([],3)
=> ([],1)
=> ? = 0 - 1
[1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> -1 = 0 - 1
[2,1] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> -1 = 0 - 1
[1,1,1,1] => [4] => ([],4)
=> ([],1)
=> ? = 0 - 1
[1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> -1 = 0 - 1
[1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> -1 = 0 - 1
[2,1,1] => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 0 = 1 - 1
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 - 1
[3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 0 - 1
[1,1,1,1,1] => [5] => ([],5)
=> ([],1)
=> ? = 0 - 1
[1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> -1 = 0 - 1
[1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> -1 = 0 - 1
[1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 - 1
[1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 0 - 1
[2,1,1,1] => [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 0 = 1 - 1
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 - 1
[2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 - 1
[2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 - 1
[3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 0 - 1
[1,1,1,1,1,1] => [6] => ([],6)
=> ([],1)
=> ? = 0 - 1
[1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> -1 = 0 - 1
[1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> -1 = 0 - 1
[1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 - 1
[1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 0 - 1
[1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 - 1
[1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 - 1
[1,3,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 0 - 1
[2,1,1,1,1] => [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> 0 = 1 - 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 - 1
[2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 - 1
[2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 - 1
[2,2,1,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 - 1
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 - 1
[2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 - 1
[3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 - 1
[4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 0 - 1
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([],1)
=> ? = 0 - 1
[1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> -1 = 0 - 1
[1,1,1,1,2,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,1,1,1,3] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> -1 = 0 - 1
[1,1,1,2,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,1,1,4] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 0 - 1
[1,1,2,1,1,1] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,1,2,2,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,1,5] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 0 - 1
[1,2,1,1,1,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0 = 1 - 1
[1,2,1,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 - 1
[1,2,1,2,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,2,2,1,1] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,6] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 0 - 1
[2,1,1,1,1,1] => [1,6] => ([(5,6)],7)
=> ([(1,2)],3)
=> 0 = 1 - 1
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 - 1
[2,1,2,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 - 1
[2,2,1,1,1] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 - 1
[2,2,1,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 - 1
[2,2,2,1] => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 - 1
[3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,1,1,2] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[3,1,2,1] => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 1 - 1
[7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 0 - 1
[1,1,1,1,1,1,1,1] => [8] => ([],8)
=> ?
=> ? = 0 - 1
[1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0 - 1
[1,1,1,1,1,2,1] => [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 - 1
[1,1,1,1,1,3] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 - 1
[1,1,1,1,2,1,1] => [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 - 1
[1,1,1,1,4] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 - 1
[1,1,1,2,1,1,1] => [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1 - 1
[1,1,1,2,2,1] => [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 - 1
[1,1,6] => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0 - 1
[1,2,1,1,1,2] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000478
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
Another weight of a partition according to Alladi.
According to Theorem 3.4 (Alladi 2012) in [1]
∑π∈GG1(r)w1(π)
equals the number of partitions of r whose odd parts are all distinct. GG1(r) is the set of partitions of r where consecutive entries differ by at least 2, and consecutive even entries differ by at least 4.
Matching statistic: St000566
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000566: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000566: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if λ=(λ0≥λ1≥⋯≥λm) is an integer partition, then the statistic is
12m∑i=0λi(λi−1).
Matching statistic: St000621
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000621: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000621: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even.
To be precise, this is given for a partition λ⊢n by the number of standard tableaux T of shape λ such that min is even.
This notion was used in [1, Proposition 2.3], see also [2, Theorem 1.1].
The case of an odd minimum is [[St000620]].
Matching statistic: St000934
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
The 2-degree of an integer partition.
For an integer partition \lambda, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by \lambda.
Matching statistic: St000936
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
The number of even values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation S^{(2,2)} are 2 on the conjugacy classes (4) and (2,2), 0 on the conjugacy classes (3,1) and (1,1,1,1), and -1 on the conjugace class (2,1,1). Therefore, the statistic on the partition (2,2) is 4.
It is shown in [1] that the sum of the values of the statistic over all partitions of a given size is even.
Matching statistic: St000938
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000938: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000938: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
The number of zeros of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation S^{(2,2)} are 2 on the conjugacy classes (4) and (2,2), 0 on the conjugacy classes (3,1) and (1,1,1,1), and -1 on the conjugacy class (2,1,1). Therefore, the statistic on the partition (2,2) is 2.
Matching statistic: St000940
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000940: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
The number of characters of the symmetric group whose value on the partition is zero.
The maximal value for any given size is recorded in [2].
Matching statistic: St001124
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001124: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001124: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> ? = 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? = 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? = 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? = 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 0
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> ? = 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? = 1
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? = 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> ? = 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[7] => ([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [1,1,1,1]
=> 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [1,1]
=> 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [1,1,1]
=> 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
Description
The multiplicity of the standard representation in the Kronecker square corresponding to a partition.
The Kronecker coefficient is the multiplicity g_{\mu,\nu}^\lambda of the Specht module S^\lambda in S^\mu\otimes S^\nu:
S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda
This statistic records the Kronecker coefficient g_{\lambda,\lambda}^{(n-1)1}, for \lambda\vdash n > 1. For n\leq1 the statistic is undefined.
It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than [[St000159]], the number of distinct parts of the partition.
The following 15 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000264The girth of a graph, which is not a tree. St001621The number of atoms of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!