Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001158
St001158: Finite Cartan types ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1 = 0 + 1
['A',2]
=> 1 = 0 + 1
['B',2]
=> 2 = 1 + 1
['G',2]
=> 2 = 1 + 1
['A',3]
=> 4 = 3 + 1
Description
The size of the mutation class of quivers of given type.
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
St001707: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2 = 1 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
Description
The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. Such a partition always exists because of a construction due to Dudek and Pralat [1] and independently Pokrovskiy [2].
Matching statistic: St000175
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [5,1]
=> 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,1,1,1]
=> 3
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial $$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$ The statistic of the degree of this polynomial. For example, the partition $(3, 2, 1, 1, 1)$ gives $$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$ which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$. This is the same as the number of unordered pairs of different parts, which follows from: $$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Matching statistic: St001329
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St001329: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3
Description
The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. A graph is outerplanar if and only if in any linear ordering of its vertices, there are no four vertices $a < b < c < d$ such that $(a,c)$ and $(b,d)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001575
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001575: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
Description
The minimal number of edges to add or remove to make a graph edge transitive. A graph is edge transitive, if for any two edges, there is an automorphism that maps one edge to the other.
Matching statistic: St000278
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St000278: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 2 = 1 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [5,1]
=> 2 = 1 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,1,1,1]
=> 4 = 3 + 1
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. This is the multinomial of the multiplicities of the parts, see [1]. This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$, where $k$ is the number of parts of $\lambda$. An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$ where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
Matching statistic: St000992
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000992: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2 = 1 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 4 = 3 + 1
Description
The alternating sum of the parts of an integer partition. For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
Matching statistic: St000256
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000256: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2 = 1 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2 = 1 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 3 + 1
Description
The number of parts from which one can substract 2 and still get an integer partition.
Matching statistic: St000480
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000480: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2 = 1 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2 = 1 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 3 + 1
Description
The number of lower covers of a partition in dominance order. According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is $$ \frac{1}{2}(\sqrt{1+8n}-3) $$ and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
Matching statistic: St001121
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St001121: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> [2]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 2 = 1 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 2 = 1 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 3 + 1
Description
The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^\lambda$.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001281The normalized isoperimetric number of a graph. St000257The number of distinct parts of a partition that occur at least twice. St000481The number of upper covers of a partition in dominance order. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001964The interval resolution global dimension of a poset. St001578The minimal number of edges to add or remove to make a graph a line graph. St001624The breadth of a lattice. St001783The number of odd automorphisms of a graph.