Your data matches 112 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001942: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> 1
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> 0
([(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(2,3),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> 1
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
Description
The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001128: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 86%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> [1]
=> []
=> ? = 0
([],2)
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {0,1}
([],3)
=> [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1}
([(1,2)],3)
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,1),(0,2)],3)
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,2),(2,1)],3)
=> [3]
=> [3]
=> []
=> ? ∊ {0,1}
([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> [1,1]
=> 1
([],4)
=> [1,1,1,1]
=> [2,2]
=> [2]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(1,2),(2,3)],4)
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(1,3),(2,3)],4)
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [4]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [3,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1}
([],5)
=> [1,1,1,1,1]
=> [2,2,1]
=> [2,1]
=> 2
([(3,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,2),(1,3)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,2]
=> [2]
=> 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [4,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [5]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2}
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(1,5),(3,4),(4,2),(5,3)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(4,2),(5,3)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> [5,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> [3,3]
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The exponens consonantiae of a partition. This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
Matching statistic: St000480
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
St000480: Integer partitions ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 0
([],2)
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 0
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> [2]
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> 0
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(1,5),(2,5),(5,3),(5,4)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(2,4),(5,3),(5,4)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,2),(1,5),(5,3),(5,4)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
Description
The number of lower covers of a partition in dominance order. According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is $$ \frac{1}{2}(\sqrt{1+8n}-3) $$ and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000741: Graphs ⟶ ℤResult quality: 76% values known / values provided: 76%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(1,5),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(1,5),(4,2),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,2),(1,3),(1,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The Colin de Verdière graph invariant.
Mp00198: Posets incomparability graphGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000260: Graphs ⟶ ℤResult quality: 67% values known / values provided: 76%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 0
([],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> [2] => ([],2)
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> [3] => ([],3)
=> ? = 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1}
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1}
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [4] => ([],4)
=> ? ∊ {0,1,1,1}
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St000207
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000207: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 71%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? ∊ {0,1}
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,2),(2,1)],3)
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1}
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4),(3,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(2,4),(2,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has all vertices in integer lattice points.
Matching statistic: St000208
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000208: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 71%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? ∊ {0,1}
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,2),(2,1)],3)
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1}
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4),(3,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(2,4),(2,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices. See also [[St000205]], [[St000206]] and [[St000207]].
Matching statistic: St000618
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000618: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 71%distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? ∊ {0,1}
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,2),(2,1)],3)
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1}
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4),(3,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(2,4),(2,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The number of self-evacuating tableaux of given shape. This is the same as the number of standard domino tableaux of the given shape.
Matching statistic: St000667
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000667: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 71%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? ∊ {0,1}
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,2),(2,1)],3)
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1}
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4),(3,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(2,4),(2,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St000755
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000755: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 71%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? ∊ {0,1}
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(0,2),(2,1)],3)
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1}
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(3,4),(3,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(2,4),(2,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial. For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
The following 102 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000781The number of proper colouring schemes of a Ferrers diagram. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001571The Cartan determinant of the integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000785The number of distinct colouring schemes of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001644The dimension of a graph. St001330The hat guessing number of a graph. St000706The product of the factorials of the multiplicities of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000914The sum of the values of the Möbius function of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001518The number of graphs with the same ordinary spectrum as the given graph. St000456The monochromatic index of a connected graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St000907The number of maximal antichains of minimal length in a poset. St001624The breadth of a lattice. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001732The number of peaks visible from the left. St000660The number of rises of length at least 3 of a Dyck path. St001877Number of indecomposable injective modules with projective dimension 2. St000659The number of rises of length at least 2 of a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001471The magnitude of a Dyck path. St000454The largest eigenvalue of a graph if it is integral. St000298The order dimension or Dushnik-Miller dimension of a poset. St001570The minimal number of edges to add to make a graph Hamiltonian. St000284The Plancherel distribution on integer partitions. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001720The minimal length of a chain of small intervals in a lattice. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001118The acyclic chromatic index of a graph. St000259The diameter of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000098The chromatic number of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St000272The treewidth of a graph. St000535The rank-width of a graph. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001331The size of the minimal feedback vertex set. St001358The largest degree of a regular subgraph of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001638The book thickness of a graph. St001743The discrepancy of a graph. St001792The arboricity of a graph. St001826The maximal number of leaves on a vertex of a graph. St001962The proper pathwidth of a graph. St000544The cop number of a graph. St001029The size of the core of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001883The mutual visibility number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001116The game chromatic number of a graph. St001746The coalition number of a graph.