searching the database
Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001112
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> 1
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> 1
([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 4
Description
The 3-weak dynamic number of a graph.
A $k$-weak-dynamic coloring of a graph $G$ is a (non-proper) coloring of $G$ in such a way that each vertex $v$ sees at least $\min\{d(v), k\}$ colors in its neighborhood. The $k$-weak-dynamic number of a graph is the smallest number of colors needed to find an $k$-dynamic coloring.
This statistic records the $3$-weak-dynamic number of a graph.
Matching statistic: St000514
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000514: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000514: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 1
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 1
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 2 = 3 - 1
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 2 = 3 - 1
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
Description
The number of invariant simple graphs when acting with a permutation of given cycle type.
Matching statistic: St000515
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000515: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000515: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 1
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 1
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 2 = 3 - 1
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 2 = 3 - 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 2 = 3 - 1
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
Description
The number of invariant set partitions when acting with a permutation of given cycle type.
Matching statistic: St000284
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 2
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
Matching statistic: St000698
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 2
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core.
For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$.
This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
Matching statistic: St000704
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000704: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 2
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
Matching statistic: St000901
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000901: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000901: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 2
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
Description
The cube of the number of standard Young tableaux with shape given by the partition.
Matching statistic: St001128
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 2
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 3 - 2
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 3 - 2
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
Description
The exponens consonantiae of a partition.
This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
Matching statistic: St000936
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000936: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 3
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 3
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 3
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 3
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 3
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 3
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 0 = 3 - 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 0 = 3 - 3
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 0 = 3 - 3
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 0 = 3 - 3
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 0 = 3 - 3
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 0 = 3 - 3
Description
The number of even values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugace class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $4$.
It is shown in [1] that the sum of the values of the statistic over all partitions of a given size is even.
Matching statistic: St000938
Mp00111: Graphs —complement⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000938: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000938: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> []
=> ?
=> ? = 1 - 3
([],2)
=> ([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 3
([(0,1)],2)
=> ([],2)
=> []
=> ?
=> ? = 1 - 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> []
=> ? = 2 - 3
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> []
=> ?
=> ? = 3 - 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 3
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 2 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 2 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 3 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 3 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> []
=> ? = 4 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> []
=> ?
=> ? = 4 - 3
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? = 1 - 3
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? = 1 - 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 2 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 2 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 2 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 3 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 3 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 2 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 3 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 3 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 3 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 4 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 0 = 3 - 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 0 = 3 - 3
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 0 = 3 - 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 0 = 3 - 3
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 0 = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 0 = 3 - 3
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 3 - 3
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 0 = 3 - 3
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 0 = 3 - 3
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 0 = 3 - 3
Description
The number of zeros of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!