Your data matches 117 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00080: Set partitions to permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001877: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2}}
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3}}
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4,5},{6}}
=> [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,4},{5}}
=> [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4},{5},{6}}
=> [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,5},{4}}
=> [6,3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,5},{4},{6}}
=> [1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3},{4,5}}
=> [6,3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4,5},{6}}
=> [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3},{4},{5}}
=> [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4},{5},{6}}
=> [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,4,5},{3}}
=> [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4,5},{3},{6}}
=> [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3,5},{6}}
=> [1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,4},{3},{5}}
=> [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3,4,5}}
=> [6,2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4,5},{6}}
=> [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3,4},{5}}
=> [6,2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4},{5},{6}}
=> [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,5},{3},{4},{6}}
=> [1,5,3,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3,5},{4}}
=> [6,2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,5},{4},{6}}
=> [1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3},{4,5}}
=> [6,2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3},{4,5},{6}}
=> [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3},{4},{5}}
=> [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,8},{2,3},{4,5},{6,7}}
=> [8,3,2,5,4,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,17),(2,17),(3,14),(4,14),(5,15),(6,15),(7,13),(8,12),(10,16),(11,16),(12,9),(13,9),(14,11),(15,10),(16,12),(16,13),(17,10),(17,11)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,8},{2,4},{3,5},{6,7}}
=> [8,4,5,2,3,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,12),(3,11),(4,11),(5,10),(6,10),(7,9),(8,9),(9,15),(10,14),(11,14),(12,16),(13,16),(14,15),(15,12),(15,13)],17)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
Description
Number of indecomposable injective modules with projective dimension 2.
Mp00080: Set partitions to permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001876: Lattices ⟶ ℤResult quality: 50% values known / values provided: 97%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2}}
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3}}
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 6
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 6
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4,5},{6}}
=> [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,4},{5}}
=> [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4},{5},{6}}
=> [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3,5},{4}}
=> [6,3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,5},{4},{6}}
=> [1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3},{4,5}}
=> [6,3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4,5},{6}}
=> [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,3},{4},{5}}
=> [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3},{4},{5},{6}}
=> [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,4,5},{3}}
=> [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4,5},{3},{6}}
=> [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3,5},{6}}
=> [1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,4},{3},{5}}
=> [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3,4,5}}
=> [6,2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4,5},{6}}
=> [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3,4},{5}}
=> [6,2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4},{5},{6}}
=> [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2,5},{3},{4},{6}}
=> [1,5,3,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3,5},{4}}
=> [6,2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,5},{4},{6}}
=> [1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3},{4,5}}
=> [6,2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3},{4,5},{6}}
=> [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,6},{2},{3},{4},{5}}
=> [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,8},{2,3},{4,5},{6,7}}
=> [8,3,2,5,4,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,17),(2,17),(3,14),(4,14),(5,15),(6,15),(7,13),(8,12),(10,16),(11,16),(12,9),(13,9),(14,11),(15,10),(16,12),(16,13),(17,10),(17,11)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,8},{2,4},{3,5},{6,7}}
=> [8,4,5,2,3,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,12),(3,11),(4,11),(5,10),(6,10),(7,9),(8,9),(9,15),(10,14),(11,14),(12,16),(13,16),(14,15),(15,12),(15,13)],17)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,8},{2,5},{3,4},{6,7}}
=> [8,5,4,3,2,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,13),(3,16),(4,15),(5,17),(6,17),(7,15),(7,19),(8,16),(8,19),(10,12),(11,12),(12,18),(13,9),(14,9),(15,10),(16,11),(17,18),(18,13),(18,14),(19,10),(19,11)],20)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
{{1,8},{2,6},{3,4},{5,7}}
=> [8,6,4,3,7,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Mp00080: Set partitions to permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
Mp00197: Lattices lattice of congruencesLattices
St001630: Lattices ⟶ ℤResult quality: 50% values known / values provided: 97%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ? = 6 + 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ? = 6 + 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3,4,5},{6}}
=> [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,3,4},{5}}
=> [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3,4},{5},{6}}
=> [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,3,5},{4}}
=> [6,3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3,5},{4},{6}}
=> [1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,3},{4,5}}
=> [6,3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3},{4,5},{6}}
=> [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,3},{4},{5}}
=> [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,3},{4},{5},{6}}
=> [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,4,5},{3}}
=> [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,4,5},{3},{6}}
=> [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,4},{3,5},{6}}
=> [1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,4},{3},{5}}
=> [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2},{3,4,5}}
=> [6,2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3,4,5},{6}}
=> [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2},{3,4},{5}}
=> [6,2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3,4},{5},{6}}
=> [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2,5},{3},{4},{6}}
=> [1,5,3,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2},{3,5},{4}}
=> [6,2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3,5},{4},{6}}
=> [1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2},{3},{4,5}}
=> [6,2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1},{2},{3},{4,5},{6}}
=> [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,6},{2},{3},{4},{5}}
=> [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,8},{2,3},{4,5},{6,7}}
=> [8,3,2,5,4,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,17),(2,17),(3,14),(4,14),(5,15),(6,15),(7,13),(8,12),(10,16),(11,16),(12,9),(13,9),(14,11),(15,10),(16,12),(16,13),(17,10),(17,11)],18)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,8},{2,4},{3,5},{6,7}}
=> [8,4,5,2,3,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,12),(3,11),(4,11),(5,10),(6,10),(7,9),(8,9),(9,15),(10,14),(11,14),(12,16),(13,16),(14,15),(15,12),(15,13)],17)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,8},{2,5},{3,4},{6,7}}
=> [8,5,4,3,2,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,13),(3,16),(4,15),(5,17),(6,17),(7,15),(7,19),(8,16),(8,19),(10,12),(11,12),(12,18),(13,9),(14,9),(15,10),(16,11),(17,18),(18,13),(18,14),(19,10),(19,11)],20)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
{{1,8},{2,6},{3,4},{5,7}}
=> [8,6,4,3,7,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001754
Mp00080: Set partitions to permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001754: Lattices ⟶ ℤResult quality: 50% values known / values provided: 97%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2}}
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3}}
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 3
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 6 + 3
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3,4,5},{6}}
=> [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,3,4},{5}}
=> [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3,4},{5},{6}}
=> [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,3,5},{4}}
=> [6,3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3,5},{4},{6}}
=> [1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,3},{4,5}}
=> [6,3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3},{4,5},{6}}
=> [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,3},{4},{5}}
=> [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,3},{4},{5},{6}}
=> [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,4,5},{3}}
=> [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,4,5},{3},{6}}
=> [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,4},{3,5},{6}}
=> [1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,4},{3},{5}}
=> [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2},{3,4,5}}
=> [6,2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3,4,5},{6}}
=> [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2},{3,4},{5}}
=> [6,2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3,4},{5},{6}}
=> [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2,5},{3},{4},{6}}
=> [1,5,3,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2},{3,5},{4}}
=> [6,2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3,5},{4},{6}}
=> [1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2},{3},{4,5}}
=> [6,2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1},{2},{3},{4,5},{6}}
=> [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,6},{2},{3},{4},{5}}
=> [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,8},{2,3},{4,5},{6,7}}
=> [8,3,2,5,4,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,17),(2,17),(3,14),(4,14),(5,15),(6,15),(7,13),(8,12),(10,16),(11,16),(12,9),(13,9),(14,11),(15,10),(16,12),(16,13),(17,10),(17,11)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,8},{2,4},{3,5},{6,7}}
=> [8,4,5,2,3,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,12),(3,11),(4,11),(5,10),(6,10),(7,9),(8,9),(9,15),(10,14),(11,14),(12,16),(13,16),(14,15),(15,12),(15,13)],17)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,8},{2,5},{3,4},{6,7}}
=> [8,5,4,3,2,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,13),(3,16),(4,15),(5,17),(6,17),(7,15),(7,19),(8,16),(8,19),(10,12),(11,12),(12,18),(13,9),(14,9),(15,10),(16,11),(17,18),(18,13),(18,14),(19,10),(19,11)],20)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
{{1,8},{2,6},{3,4},{5,7}}
=> [8,6,4,3,7,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 1 + 3
Description
The number of tolerances of a finite lattice. Let $L$ be a lattice. A tolerance $\tau$ is a reflexive and symmetric relation on $L$ which is compatible with meet and join. Equivalently, a tolerance of $L$ is the image of a congruence by a surjective lattice homomorphism onto $L$. The number of tolerances of a chain of $n$ elements is the Catalan number $\frac{1}{n+1}\binom{2n}{n}$, see [2].
Mp00080: Set partitions to permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001356: Graphs ⟶ ℤResult quality: 76% values known / values provided: 76%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => ([(0,1)],2)
=> 0 = 1 - 1
{{1},{2}}
=> [1,2] => ([],2)
=> 0 = 1 - 1
{{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0 = 1 - 1
{{1},{2},{3}}
=> [1,2,3] => ([],3)
=> 0 = 1 - 1
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(2,3)],4)
=> 0 = 1 - 1
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([],4)
=> 0 = 1 - 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0 = 1 - 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0 = 1 - 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,3,4,5},{6}}
=> [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2,3,4},{5}}
=> [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,3,4},{5},{6}}
=> [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2,3,5},{4}}
=> [6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,3,5},{4},{6}}
=> [1,3,5,4,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2,3},{4,5}}
=> [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,3},{4,5},{6}}
=> [1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> 0 = 1 - 1
{{1,6},{2,3},{4},{5}}
=> [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,3},{4},{5},{6}}
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2,4,5},{3}}
=> [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,4,5},{3},{6}}
=> [1,4,3,5,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,4},{3,5},{6}}
=> [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
{{1,6},{2,4},{3},{5}}
=> [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2},{3,4,5}}
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2},{3,4,5},{6}}
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2},{3,4},{5}}
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2},{3,4},{5},{6}}
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2,5},{3},{4},{6}}
=> [1,5,3,4,2,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2},{3,5},{4}}
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2},{3,5},{4},{6}}
=> [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2},{3},{4,5}}
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1},{2},{3},{4,5},{6}}
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> 0 = 1 - 1
{{1,6},{2},{3},{4},{5}}
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
{{1,8},{2,3},{4,5},{6,7}}
=> [8,3,2,5,4,7,6,1] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,4},{3,5},{6,7}}
=> [8,4,5,2,3,7,6,1] => ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,5},{3,4},{6,7}}
=> [8,5,4,3,2,7,6,1] => ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,6},{3,4},{5,7}}
=> [8,6,4,3,7,2,5,1] => ([(0,1),(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,6},{3,5},{4,7}}
=> [8,6,5,7,3,2,4,1] => ([(0,1),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,4},{3,6},{5,7}}
=> [8,4,6,2,7,3,5,1] => ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,5),(1,6),(1,7),(2,4),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,3},{4,6},{5,7}}
=> [8,3,2,6,7,4,5,1] => ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,3},{4,7},{5,6}}
=> [8,3,2,7,6,5,4,1] => ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,4},{3,7},{5,6}}
=> [8,4,7,2,6,5,3,1] => ([(0,1),(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1,8},{2,5},{3,7},{4,6}}
=> [8,5,7,6,2,4,3,1] => ([(0,1),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1},{2,3,4},{5,6,7},{8}}
=> [1,3,4,2,6,7,5,8] => ([(2,7),(3,7),(4,6),(5,6)],8)
=> ? = 1 - 1
{{1,8},{2,5},{3},{4,6,7}}
=> [8,5,3,6,2,7,4,1] => ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
{{1},{2,6},{3,7},{4},{5},{8}}
=> [1,6,7,4,5,2,3,8] => ([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 1 - 1
{{1},{2,5,6},{3,4,7},{8}}
=> [1,5,4,7,6,2,3,8] => ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 1 - 1
{{1},{2,5},{3},{4,7},{6},{8}}
=> [1,5,3,7,2,6,4,8] => ([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 1 - 1
Description
The number of vertices in prime modules of a graph.
Matching statistic: St000618
Mp00079: Set partitions shapeInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000618: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2]
=> [2]
=> []
=> ? = 1
{{1},{2}}
=> [1,1]
=> [1,1]
=> [1]
=> 1
{{1,3},{2}}
=> [2,1]
=> [3]
=> []
=> ? = 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> [4]
=> []
=> ? = 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,3,4}}
=> [3,2]
=> [4,1]
=> [1]
=> 1
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,4,5}}
=> [4,2]
=> [4,2]
=> [2]
=> 1
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
{{1,6},{2,3,4},{5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,5},{4}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,4,5},{3}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,4},{3,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,4},{3,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,4},{3},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5},{3,4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2},{3,4,5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2},{3,4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,5},{3},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3,5},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4,5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3},{4,5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4},{5}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,8},{2,3},{4,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,4},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,4},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,5},{4,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,7},{4,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1},{2,3,4},{5,6,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1,8},{2,5},{3},{4,6,7}}
=> [3,2,2,1]
=> [5,3]
=> [3]
=> 1
{{1},{2,6},{3,7},{4},{5},{8}}
=> [2,2,1,1,1,1]
=> [5,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5,6},{3,4,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1},{2,5},{3},{4,7},{6},{8}}
=> ?
=> ?
=> ?
=> ? = 1
Description
The number of self-evacuating tableaux of given shape. This is the same as the number of standard domino tableaux of the given shape.
Matching statistic: St000781
Mp00079: Set partitions shapeInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2]
=> [2]
=> []
=> ? = 1
{{1},{2}}
=> [1,1]
=> [1,1]
=> [1]
=> 1
{{1,3},{2}}
=> [2,1]
=> [3]
=> []
=> ? = 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> [4]
=> []
=> ? = 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,3,4}}
=> [3,2]
=> [4,1]
=> [1]
=> 1
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,4,5}}
=> [4,2]
=> [4,2]
=> [2]
=> 1
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
{{1,6},{2,3,4},{5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,5},{4}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,4,5},{3}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,4},{3,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,4},{3,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,4},{3},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5},{3,4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2},{3,4,5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2},{3,4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,5},{3},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3,5},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4,5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3},{4,5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4},{5}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,8},{2,3},{4,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,4},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,4},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,5},{4,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,7},{4,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1},{2,3,4},{5,6,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1,8},{2,5},{3},{4,6,7}}
=> [3,2,2,1]
=> [5,3]
=> [3]
=> 1
{{1},{2,6},{3,7},{4},{5},{8}}
=> [2,2,1,1,1,1]
=> [5,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5,6},{3,4,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1},{2,5},{3},{4,7},{6},{8}}
=> ?
=> ?
=> ?
=> ? = 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St001432
Mp00079: Set partitions shapeInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001432: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2]
=> [2]
=> []
=> ? = 1
{{1},{2}}
=> [1,1]
=> [1,1]
=> [1]
=> 1
{{1,3},{2}}
=> [2,1]
=> [3]
=> []
=> ? = 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> [4]
=> []
=> ? = 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,3,4}}
=> [3,2]
=> [4,1]
=> [1]
=> 1
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,4,5}}
=> [4,2]
=> [4,2]
=> [2]
=> 1
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
{{1,6},{2,3,4},{5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,5},{4}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,4,5},{3}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,4},{3,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,4},{3,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,4},{3},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5},{3,4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2},{3,4,5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2},{3,4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,5},{3},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3,5},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4,5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3},{4,5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4},{5}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,8},{2,3},{4,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,4},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,4},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,5},{4,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,7},{4,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1},{2,3,4},{5,6,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1,8},{2,5},{3},{4,6,7}}
=> [3,2,2,1]
=> [5,3]
=> [3]
=> 1
{{1},{2,6},{3,7},{4},{5},{8}}
=> [2,2,1,1,1,1]
=> [5,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5,6},{3,4,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1},{2,5},{3},{4,7},{6},{8}}
=> ?
=> ?
=> ?
=> ? = 1
Description
The order dimension of the partition. Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St001780
Mp00079: Set partitions shapeInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001780: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2]
=> [2]
=> []
=> ? = 1
{{1},{2}}
=> [1,1]
=> [1,1]
=> [1]
=> 1
{{1,3},{2}}
=> [2,1]
=> [3]
=> []
=> ? = 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> [4]
=> []
=> ? = 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,3,4}}
=> [3,2]
=> [4,1]
=> [1]
=> 1
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,4,5}}
=> [4,2]
=> [4,2]
=> [2]
=> 1
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
{{1,6},{2,3,4},{5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,5},{4}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,4,5},{3}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,4},{3,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,4},{3,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,4},{3},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5},{3,4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2},{3,4,5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2},{3,4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,5},{3},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3,5},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4,5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3},{4,5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4},{5}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,8},{2,3},{4,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,4},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,4},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,5},{4,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,7},{4,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1},{2,3,4},{5,6,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1,8},{2,5},{3},{4,6,7}}
=> [3,2,2,1]
=> [5,3]
=> [3]
=> 1
{{1},{2,6},{3,7},{4},{5},{8}}
=> [2,2,1,1,1,1]
=> [5,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5,6},{3,4,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1},{2,5},{3},{4,7},{6},{8}}
=> ?
=> ?
=> ?
=> ? = 1
Description
The order of promotion on the set of standard tableaux of given shape.
Matching statistic: St001899
Mp00079: Set partitions shapeInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001899: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
{{1,2}}
=> [2]
=> [2]
=> []
=> ? = 1
{{1},{2}}
=> [1,1]
=> [1,1]
=> [1]
=> 1
{{1,3},{2}}
=> [2,1]
=> [3]
=> []
=> ? = 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> [4]
=> []
=> ? = 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,3,4}}
=> [3,2]
=> [4,1]
=> [1]
=> 1
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [5]
=> []
=> ? = 6
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [5]
=> []
=> ? = 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,1]
=> 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,4,5}}
=> [4,2]
=> [4,2]
=> [2]
=> 1
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [4,1,1]
=> [1,1]
=> 1
{{1,6},{2,3,4},{5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3,5},{4}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,4,5},{3}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2,4},{3,5}}
=> [2,2,2]
=> [6]
=> []
=> ? = 1
{{1},{2,4},{3,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2,4},{3},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5},{3,4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1,6},{2},{3,4,5}}
=> [3,2,1]
=> [3,3]
=> [3]
=> 1
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
{{1,6},{2},{3,4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2,5},{3},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3,5},{4}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4,5}}
=> [2,2,1,1]
=> [5,1]
=> [1]
=> 1
{{1},{2},{3},{4,5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,6},{2},{3},{4},{5}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 1
{{1,8},{2,3},{4,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,5},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,4},{6,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,4},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,6},{3,5},{4,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,6},{5,7}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,3},{4,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,4},{3,7},{5,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1,8},{2,5},{3,7},{4,6}}
=> [2,2,2,2]
=> [8]
=> []
=> ? = 1
{{1},{2,3,4},{5,6,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1,8},{2,5},{3},{4,6,7}}
=> [3,2,2,1]
=> [5,3]
=> [3]
=> 1
{{1},{2,6},{3,7},{4},{5},{8}}
=> [2,2,1,1,1,1]
=> [5,1,1,1]
=> [1,1,1]
=> 1
{{1},{2,5,6},{3,4,7},{8}}
=> ?
=> ?
=> ?
=> ? = 1
{{1},{2,5},{3},{4,7},{6},{8}}
=> ?
=> ?
=> ?
=> ? = 1
Description
The total number of irreducible representations contained in the higher Lie character for an integer partition.
The following 107 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000260The radius of a connected graph. St000264The girth of a graph, which is not a tree. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001856The number of edges in the reduced word graph of a permutation. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001429The number of negative entries in a signed permutation. St000068The number of minimal elements in a poset. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001862The number of crossings of a signed permutation. St001863The number of weak excedances of a signed permutation. St001864The number of excedances of a signed permutation. St001867The number of alignments of type EN of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001889The size of the connectivity set of a signed permutation. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001490The number of connected components of a skew partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001396Number of triples of incomparable elements in a finite poset. St000100The number of linear extensions of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000307The number of rowmotion orbits of a poset. St000635The number of strictly order preserving maps of a poset into itself. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001890The maximum magnitude of the Möbius function of a poset. St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. St000195The number of secondary dinversion pairs of the dyck path corresponding to a parking function. St000943The number of spots the most unlucky car had to go further in a parking function. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001964The interval resolution global dimension of a poset. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000298The order dimension or Dushnik-Miller dimension of a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001768The number of reduced words of a signed permutation. St001779The order of promotion on the set of linear extensions of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000632The jump number of the poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St000907The number of maximal antichains of minimal length in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001371The length of the longest Yamanouchi prefix of a binary word. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001524The degree of symmetry of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001902The number of potential covers of a poset. St001927Sparre Andersen's number of positives of a signed permutation. St001472The permanent of the Coxeter matrix of the poset. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001635The trace of the square of the Coxeter matrix of the incidence algebra of a poset. St001060The distinguishing index of a graph. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001624The breadth of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.